Binomial Option Pricing Problem Solutions

Finance 4335
Bitcoin, Inc., stock is currently worth $\$ 56$. Each year, it can change by a factor of 0.9 or 1.3 . The stock pays no dividends, and the annual continuously compounded risk-free interest rate is 4%.
A. Calculate the price of a one-year European put option on Bitcoin, Inc. stock with an exercise price of $\$ 60$.
SOLUTION: We can solve this problem by via replicating portfolio and risk neutral valuation approaches.

1. According to the Replicating Portfolio Approach:
$\Delta=\frac{P_{u}-P_{d}}{u S-d S}=\frac{0-9.60}{72.80-50.40}=-.4286 ;$ and $B=\frac{u P_{d}-d P_{u}}{e^{r \delta t}(u-d)}=\frac{1.3(9.60)-.9(0)}{1.0408(.4)}=$ 29.98. Then $V_{R P}=P=\Delta S+B=-.4286(56)+29.98=\$ 5.98$.
2. According to the Risk Neutral Valuation Approach:

The risk neutral probability of an up move is $q=\frac{e^{r \delta t}-d}{u-d}=\frac{e^{.04}-.9}{1.3-.9}=.352$. Since the stock is worth $\$ 56(1.3)=\$ 72.80$ at the u node and $\$ 56(.9)=\$ 50.40$ at the d node, this means that the put is only in the money at the d node; specifically, it is worth $\$ 9.60$ at that node. Therefore, the price of a one-year put option is

$$
p=e^{-r \delta t}\left[q p_{u}+(1-q) p_{d}\right]=e^{-.04}[.648(9.60)]=\$ 5.98 .
$$

B. Calculate the price of a one-year European call option on Bitcoin, Inc. stock with an exercise price of $\$ 60$.
SOLUTION: We can solve this problem by via put-call parity, replicating portfolio, and risk neutral valuation approaches.

1. According to put-call parity,

$$
C=P+S-K e^{-r \delta t}=\$ 5.98+\$ 56-\$ 60 e^{-.04}=\$ 4.33
$$

2. According to the Replicating Portfolio Approach:
$\Delta=\frac{C_{u}-C_{d}}{u S-d S}=\frac{12.80-0}{72.80-50.40}=.5714$ and $B=\frac{u C_{d}-d C_{u}}{e^{r \delta t}(u-d)}=\frac{1.3(0)-.9(12.80)}{1.0408(.4)}=$ -27.67. Then $V_{R P}=C=\Delta S+B=.5714(56)-27.67=\$ 4.33$.
3. According to the Risk Neutral Valuation Approach:

The risk neutral probability of an up move is $q=\frac{e^{r \delta t}-d}{u-d}=\frac{e^{.04}-.9}{1.3-.9}=.352$. Since the stock is worth $\$ 56(1.3)=\$ 72.80$ at the u node and $\$ 56(.9)=\$ 50.40$ at the d node, this
means that the call is only in the money at the u node; specifically, it is worth $\$ 12.80$ at that node. Therefore, the price of a one-year call option is

$$
c=e^{-r \delta t}\left[q c_{u}+(1-q) c_{d}\right]=e^{-.04}[.352(12.80)]=\$ 4.33
$$

C. Calculate the price of a two-year European put option on Bitcoin, Inc. stock with an exercise price of $\$ 60$.
SOLUTION: With two timesteps, there will be 3 terminal nodes - uu, ud, and $d d$. The share price at these 3 nodes is $\$ 94.64, \$ 65.52$, and $\$ 45.36$ respectively. This implies that the put is only in the money at the $d d$ node; specifically, it is worth $\$ 14.64$ at that node. Therefore, the price of a two-year put option (based on risk neutral valuation) is

$$
p=e^{-2 r \delta t}\left[q^{2} p_{u u}+2 q(1-q) p_{u d}+(1-q)^{2} p_{d d}\right]=e^{-.08}\left(.648^{2}\right)(14.64)=\$ 5.67 .
$$

D. Calculate the price of a two-year European call option on Bitcoin, Inc. stock with an exercise price of $\$ 60$.

SOLUTION: We can solve this problem by applying the put-call parity equation, replicating portfolio approach, or risk neutral valuation. According to put-call parity,

$$
c=p+S-K e^{-2 r \delta t}=\$ 5.67+\$ 56-\$ 60 e^{-.08}=\$ 6.29
$$

Applying risk neutral valuation, note that the call option is in the money at the $u u$ node (where it is worth $\$ 94.64-60=\$ 34.64$) and at the $u d$ node (where it is worth $\$ 65.52$ $60=\$ 5.62$); however, it is out of the money at the $d d$ node. Therefore, the price of a two-year call option is
$c=e^{-2 r \delta t}\left[q^{2} c_{u u}+2 q(1-q) c_{u d}+(1-q)^{2} c_{d d}\right]=e^{-.08}\left[.352^{2}(34.64)+2(.352)(.648)(5.62)\right]=\$ 6.29$.

