Portfolio Theory Class Problem

Finance 4335

Consider a market with only two securities, numbered 1 and 2. Expected returns are $E\left(r_{1}\right)=$ 12% and $E\left(r_{2}\right)=8 \%$, standard deviations are $\sigma_{1}=10 \%$ and $\sigma_{2}=4 \%$, and $\rho_{12}=-1$; i.e., returns are perfectly negatively correlated.
A. Let $w_{1} \geq 0$ be the proportion of wealth invested in security 1 and $w_{2} \geq 0$ be the proportion of wealth invested in security 2 , where $w_{1}+w_{2}=1$. Given these portfolio allocation constraints, what is the range of expected portfolio returns for all possible portfolio combinations consisting of these two securities (including cases where $w_{1}=0$ or $\left.w_{2}=0\right)$?
B. What is the range of standard deviations for all possible portfolio combinations considered in Part A of this problem (including cases where $w_{1}=0$ or $w_{2}=0$)?
C. What is the expected return and standard deviation for the minimum risk combination of securities 1 and 2 ?
D. Suppose the riskless lending and borrowing rate is 10%. Describe a trading strategy involving security 1 , security 2 , and the riskless asset which would enable you to earn riskless arbitrage profits without investing any of your own money.
E. Describe how and why competition amongst investors will cause the returns on these three assets to adjust, such that the opportunity for riskless arbitrage ceases to exist.

