Portfolio and Capital Market Theory

- **Two-asset portfolio:** Given $E(r_1)$, $E(r_2)$, σ_1 , σ_2 , and $\sigma_{1,2}$, determine the *feasible* set of portfolios in $\{E(r_p), \sigma_p\}$ space by selecting arbitrary combinations of w_1 and $w_2 = 1 w_1$, where $E(r_p) = w_1 E(r_1) + w_2 E(r_2)$ and $\sigma_p = \sqrt{w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \sigma_{12}}$.
- Next, identify that subset of portfolios which are *mean-variance* efficient (MVE); the end-point of the "efficient frontier" is the minimum variance portfolio (MVP), where $w_1 = \frac{\sigma_2^2 \sigma_{12}}{\sigma_1^2 + \sigma_2^2 2\sigma_{12}}$.
- For example, suppose $E(r_1) = .09$, $E(r_2) = .12$, $\sigma_1 = .10$, $\sigma_2 = .20$; then $\sigma_{1,2} = -.02$, $w_1 = \frac{.04 - (-.02)}{.01 + .02 - 2(-.02)} = 2/3$, $E(r_p) = .10$, and $\sigma_p = 0$. Then the efficient frontier consists of all portfolios where $w_1 \le 2/3$, while all portfolios where $w_1 > 2/3$ are *mean variance inefficient*.
- See http://fin4335.garven.com/spring2024/2assetportfolio.xlsx.

Mean-variance efficiency with 2 risky assets

Mean-variance efficiency with n risky securities

- Given $E(r_i)$, σ_i and $\sigma_{i,j}$ for i = 1, ..., n and j = 1, ..., n, determine the *feasible* set of portfolios in $\{E(r_p), \sigma_p\}$ space by selecting arbitrary combinations of $w_1, w_2, ..., w_n$, where $\sum_{i=1}^n w_i = 1, E(r_p) = \sum_{i=1}^n w_i E(r_i)$ and $\sigma_p = \sqrt{\sum_{i=1}^n \sum_{j=1}^n w_i w_j \sigma_{ij}}$.
- Next, identify that subset of portfolios which are *mean-variance efficient* (MVE); as in the two-asset case, the end point of the "efficient frontier" in the *n*-asset case is the minimum variance portfolio (MVP).
- All portfolios on the northwest perimeter of the feasible set of portfolios, beginning with the MVP, are located on the efficient frontier.

Mean-variance efficiency with n risky securities

$$\underset{\{w_1, w_2, ..., w_n\}}{\text{Minimize}} \ \sigma_p^2 = \sum_{i=1}^n \sum_{j=1}^n w_i w_j \sigma_{ij},$$

subject to $E(r_p) = \sum_{i=1}^{n} w_i E(r_i) = \chi \text{ and } \sum_{i=1}^{n} w_i = 1.$

- The analyst traces out the efficient frontier for a set of n assets by iteratively solving this optimization problem.
- The $E(r_p)$ constraint is initially nonbinding, since the analyst must first determine the *unique* asset allocation scheme for the minimum variance portfolio (MVP).
- Next, the analyst calculates $E(r_{mvp})$ and determines the rest of the efficient frontier by iteratively calculating asset allocation schemes that produce increasingly higher values for χ (and consequently higher values for both $E(r_p)$ and σ_p^2).

- Next, we turn our attention to the issue of how to select an optimal portfolio. This requires revisiting the Arrow-Pratt framework.
- According to Arrow-Pratt, $W_{CE} = E(W) \lambda$, where $\lambda = .5\sigma_W^2 R_A(E(W))$, $R_A(W) = -U''/U'$ is the Arrow-Pratt measure of absolute risk aversion, and $R_A(E(W))$ represents the degree of absolute risk aversion for a given E(W).
- Absolute risk aversion corresponds to the *dollar amount* of wealth that an investor is willing to put at risk, whereas *relative* risk aversion $R_R = WR_A(W)$ corresponds to the proportion of wealth that an investor is willing to put at risk.
- Risk tolerance (τ) is the reciprocal of relative risk aversion; i.e., $\tau = 1/R_R$.

- Since $W_{CE} = E(W) \lambda$, the certainty-equivalent of the *percentage change in wealth* (r_p^c) equals the difference between the expected return on the investor's portfolio $(E(r_p))$ minus the (percentage) risk premium; i.e., $.5\sigma_p^2 R_R = .5\sigma_p^2/\tau$. Thus, $r_p^c = E(r_p) .5\sigma_p^2/\tau \Rightarrow E(r_p) = r_p^c + .5\sigma_p^2/\tau$.
- Since maximizing expected utility is equivalent to maximizing the certainty-equivalent portfolio return, $E(r_p) = r_p^c + .5\sigma_p^2/\tau$ is our indifference curve equation.
- The investor's utility is constant along each possible the indifference curve. The *higher* the risk tolerance τ , the *flatter* the curve.
- On page 8, we show indifference curves for $\tau = .25$ compared with $\tau = .50$). We also vary r_p^c from 6% to 10%.

The expected utility maximizing investor finds the portfolio where her highest indifference curve is tangent to the efficient frontier.

- Suppose the investor limits her portfolio selection to a riskless security with expected return r_f and zero standard deviation and a risky security (or portfolio of risky securities) with expected return $E(r_j)$ and standard deviation σ_j .
- Let α denote the proportion of the portfolio invested in the risky security. Thus, the expected return $E(r_p)$ and standard deviation σ_p for the portfolio are: $E(r_p) = \alpha E(r_j) + (1 \alpha) r_f$, and $\sigma_p = \sqrt{\alpha^2 \sigma_j^2 + (1 \alpha)^2 \sigma_f^2 + 2\alpha (1 \alpha) \sigma_{j,f}} = \alpha \sigma_j$.
- Since $\alpha = \sigma_p / \sigma_j$, we replace α in the equation for $E(r_p)$ with the ratio σ_p / σ_j , yielding

$$E(r_p) = r_f + \frac{E(r_j) - r_f}{\sigma_j} \sigma_p.$$

- From page 7, since $r_p^c = E(r_p) .5\sigma_p^2/\tau$, $E(r_p) = \alpha E(r_j) + (1 \alpha)r_f$, and $\sigma_p^2 = \alpha^2 \sigma_j^2$, it follows that $r_p^c = \alpha E(r_j) + (1 - \alpha)r_f - (.5/\tau)\alpha^2 \sigma_j^2$.
- Differentiating this equation with respect to the α and setting the resulting expression equal to zero yields the first order condition:

$$dr_p^c/d\alpha = E(r_j) - r_f - (1/\tau)\alpha\sigma_j^2 = 0.$$

• Rearranging the first order condition and solving for α results in the following equation for α :

$$\alpha = \frac{(E(r_j) - r_f)}{\sigma_j^2} \tau = \frac{(E(r_j) - r_f)}{\sigma_j} \frac{\tau}{\sigma_j}$$

- In the $\alpha = \frac{(E(r_j) r_f) \tau}{\sigma_j \sigma_j}$ equation, the first ratio is the wellknown "Sharpe Ratio"; thus, α is positively related to the Sharpe Ratio and τ , and inversely related to σ_j .
- Suppose $E(r_j) = 12\%$, $r_f = 4\%$, and $\sigma_j = 20\%$; the following table shows how changes in risk tolerance affect α :

Risk tolerance (τ)	α	$1-\alpha$	$E(r_p)$	σ_p
1.0	200%	-100%	20%	40%
0.8	160%	-60%	17%	32%
0.6	120%	-20%	14%	24%
0.4	80%	20%	10%	16%
0.2	40%	60%	7%	8%
0.0	0%	100%	4%	0%

 σ_p

The Capital Market Line (CML)

• The line in the figure on page 15 is commonly referred to as the *capital market line* (CML). This is the efficient frontier in a world in which investors can borrow and lend money at the risk-free rate of interest. The equation for the Capital Market Line is:

$$E(r_p) = r_f + \frac{E(r_j) - r_f}{\sigma_M} \sigma_p.$$

• The expected rate of return on a mean-variance efficient portfolio consists of two components: 1) the return on a riskless security which compensates investors for the time value of money and 2) a risk premium which compensates investors for bearing risk.

The Capital Market Line (CML)

- An important implication of the Capital Market Line is that in equilibrium, all risk-return tradeoffs must be equal.
- Assume that the market portfolio consists of all (N) securities in the economy, and security j accounts for w_j percent of the market portfolio. Then the equations for the expected return $(E(r_M))$ and the variance (σ_M^2) are

$$E(r_M) = \sum_{j=1}^N w_j (E(r_j) - r_f) + r_f, \text{ and}$$
$$\sigma_M^2 = \sum_{i=1}^N \sum_{j=1}^N w_i w_j \sigma_{i,j}.$$

The Capital Market Line (CML)

- Suppose that we marginally increase w_j . Then $E(r_p)$ changes by $E(r_j) - r_f$, and σ_p^2 changes by $\sum_{i=1}^N w_i \sigma_{j,i} = \sigma_{j,M}$. Thus, the return/risk trade-off is $(E(r_j) - r_f)/\sigma_{j,M}$.
- In equilibrium, the risk-return tradeoff must be the same for all securities; i.e., $(E(r_i) r_f)/\sigma_{i,M}) = (E(r_j) r_f)/\sigma_{j,M})$ for all i and j. Therefore, if $(E(r_i) r_f)/\sigma_{i,M}) \neq (E(r_j) r_f)/\sigma_{j,M})$, then there is an *arbitrage* opportunity.
- Suppose $(E(r_i) r_f)/\sigma_{i,M} > (E(r_j) r_f)/\sigma_{j,M})$. Then *i* offers a better risk-return trade-off than $j \Rightarrow$ investors buy *i* and short (sell) *j*. Consequently, in equilibrium, the risk-return trade-off must be equal for all securities; i.e., $(E(r_i) r_f)/Cov(r_i, r_M) = (E(r_j) r_f)/\sigma_{j,M})$ for all *i* and *j*.

The Capital Asset Pricing Model (CAPM)

• If the risk-return tradeoff is the same for all i and j, than it must also be same for the market as it is for i and j; thus,

$$\frac{E(r_i) - r_f}{\sigma_{i,M}} = \frac{E(r_M) - r_f}{\sigma_M^2}.$$

• Next, solve this equation for $E(r_i)$:

$$E(r_i) = r_f + \frac{\sigma_{i,M}}{\sigma_M^2} (E(r_M) - r_f) = r_f + \beta_i (E(r_M) - r_f),$$

where $\beta_i = \frac{\sigma_{i,M}}{\sigma_M^2}$. This equation is commonly known as the *capi-tal asset pricing model* or CAPM and is represented graphically in the figure on the next page.

• According to the CAPM equation $E(r_i) = r_f + \beta_i (E(r_M) - r_f))$, the expected rate of return on a risky security consists of 1) the return on a riskless security, and 2) a risk premium which is proportional to "beta", which measures "systematic" risk.

The Capital Asset Pricing Model (CAPM)

The Capital Asset Pricing Model (CAPM)

- The appropriate measure of risk for an individual security is its **beta**.
- Beta measures the sensitivity of the security to **market risk** factors.
- The higher the beta, the more sensitive the security is to market movements.
- The average security has a beta of 1.0.
- Portfolio betas are weighted averages of the betas for the individual securities in the portfolio.
- The market risk premium is $[E(r_M)-r_f]$.