# Risk Aversion Class Problem Solutions 

by James R. Garven

Finance 4335
February 6, 2024
Individual \#1 has the following utility function: $U(W)=\sqrt{W}$. Her initial wealth is $\$ 10$ and she is offered a coin toss which pays off $\$ 6$ if the coin comes up heads and $-\$ 6$ if the coin comes up tails.
A. Compute the exact value of the certainty equivalent and of the risk premium for $\# 1$.

SOLUTION: Solving for the "exact" values of the certainty equivalent $W_{C E}$ and the risk premium $\lambda(E(W))$ requires that we first find the expected utility of the gamble, set this equal to the utility of the certainty equivalent, and then compute $W_{C E}$ directly. Once we know $W_{C E}$, then $\lambda(E(W))=E(W)-W_{C E}$. Since the state space is $(\langle 4,16\rangle,\langle .5, .5\rangle), E(W)=10$ and $E(U(W))=$ $.5(2)+.5(4)=3$. Therefore, $E(U(W))=\sqrt{W_{C E}}=3$; thus $W_{C E}=9$, and $\lambda(E(W))=1$.
B. Apply the Arrow-Pratt absolute risk aversion formula to obtain an approximation of the risk premium for $\# 1$.

$$
\lambda(E(W)) \cong \sigma^{2} .5 R_{A}(E(W))
$$

SOLUTION: The "approximate" value of $\lambda(E(W)) \cong \sigma^{2} .5 R_{A}(E(W))$, where $R_{A}(E(W))$ corresponds to the ratio $-U^{\prime \prime}(W) / U^{\prime}(W)$ evaluated at $E(W)$. For this utility function, $U^{\prime}(W)=$ $.5 W^{-.5}$, and $U^{\prime \prime}(W)=-.25 W^{-1.5}$, so $-U^{\prime \prime}(W) / U^{\prime}(W)=.5 / W$ and $R_{A}(E(W))=.5 / 10=.05$. Since the standard deviation of a fair coin toss is half of the total dispersion between the state contingent wealth values, this implies that $\sigma=6$, which implies that $\sigma^{2}=36$. Therefore, $\lambda(E(W)) \cong 36(.5)(.05)=.9$.
C. Show that $\# 1$ 's absolute risk aversion is decreasing in wealth.
 is decreasing in wealth. Although the calculus lends a nice touch, that \#1's absolute risk aversion is decreasing in wealth is apparent by inspection.
D. Suppose that individual $\# 2$ is offered this gamble. Individual $\# 2$ is identical in all respects to individual \#1, except \#2's utility $U(W)=W^{25}$. Compute the exact value of the certainty equivalent and of the risk premium for $\# 2$, and also apply the Arrow-Pratt absolute risk aversion formula to obtain an approximation of the risk premium for this individual.

SOLUTION: Individual \#2's expected utility $E(U(W))=.5\left(4^{.25}\right)+.5\left(16^{.25}\right)=1.707$. Therefore, $E(U(W))=W_{C E}^{.25}=1.707$; thus $W_{C E}=1.707^{4}=8.49$, and the "exact" $\lambda(E(W))=1.51$. Since $R_{A}(W)=.75 / W$ for Individual $\# 2$, it follows that $\lambda(E(W)) \cong 36(.5)(.075)=1.35$.
E. Who is more risk averse, \#1 or \#2? Explain why.

SOLUTION: Individual \#2 is more risk averse than Individual \#1, since \#2 has a higher risk aversion coefficient than $\# 1$. Consequently, other things equal, $\# 2$ also has a higher risk premium.

