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Economics and Convergence of Binomial and Black-Scholes Option Pricing Formulas

1 Introduction

It is often challenging for students of finance to grasp fully the logic of the economics and
convergence of the binomial and the Black and Scholes (1973) option pricing formulas. A
rigorous comprehension of these formulas is important not only for investment analysis
but also for studying corporate finance topics such as real options, agency theory,
risk management, managerial compensation, credit risk, and so on. From a practical
perspective, options may also make up an important aspect of future compensation
packages for finance graduates. If students understand option pricing theory, they
will be better prepared to succeed in their vocational pursuits and personal financial
decisions.

In this paper, we provide a pedagogical framework that introduces the basic con-
cepts necessary to understand the economics behind the binomial and Black-Scholes
option pricing formulas, and also explains the convergence from the binomial model
to the Black-Scholes model. We provide suggestions for walking students through the
mathematical portions, and a simple case study example in which students use the bi-
nomial and Black-Scholes pricing formulas to evaluate competing salary offers. Finally,
we provide a spreadsheet template showing how multi-period binomial model proba-
bilities and prices numerically converge to their Black-Scholes counterparts,1 and we
numerically illustrate how the histogram of the terminal stock return in the multi-period
binomial tree numerically converges in probability to the normal density function.

To motivate class discussion, suppose a student receives two competing job offers,
and wishes to determine which offer is more financially attractive. Company A has
offered a fixed annual salary of $60,000, whereas Company B’s offer is for a fixed
annual salary of $50,000 plus an employee stock option (ESO) grant for 5,000 shares of
Company B’s stock, expiring in one year with a $60 per share exercise price. Company
B’s stock trades for $50, and in our initial numerical example, the stock price will
either rise to $62.50 or fall to $40 one year from today. The challenge for the student
is to estimate the values of each offer. In subsequent iterations of this example, we
replace the binomial outcomes suggested here with outcomes based on the volatility
of Company B’s stock, and the time to expiration is extended beyond one year. We
assume throughout the paper that options are European (i.e., exercise may only occur
at expiration), and that the underlying asset does not pay dividends.2

In the next section of this paper, we feature the single-period versions of the delta
hedging and replicating portfolio approaches to pricing options, and show how both

1 This spreadsheet uses only the standard Excel functions without relying on macros or other chal-
lenging coding techniques.

2 Hull and White (2004) provide technical modifications for the binomial and Black-Scholes option
pricing models studied here. They explicitly consider the incremental pricing consequences for em-
ployee stock options (ESOs) of vesting periods, the possibility that employees may leave the company
during the life of the ESO, and the inability of employees to trade their options. Notwithstanding
the practical importance of these issues, a consideration of such unique features of ESOs goes well
beyond the scope of this paper. Our primary purpose here is to motivate student interest in study-
ing and understanding the basics of option pricing which are foundational for both the theory and
practice of finance.
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methods encompass the risk-neutral valuation approach.3 All three methods rely on
the so-called “no-arbitrage” principle, where arbitrage refers to the opportunity to
earn riskless profits by taking advantage of price differences between virtually iden-
tical investments; i.e., arbitrage represents the financial equivalent of a “free lunch”.
However, since competition dissipates the opportunity to earn riskless profits, so-called
“arbitrage-free” prices for options emerge.

In the section titled “The Multi-Period Model”, we extend the risk-neutral valua-
tion model to two or more periods, and show how it generalizes as the Cox, Ross, and
Rubinstein (1979) binomial option pricing formula. In the penultimate section of the
paper, we illustrate how probabilities and prices under the Cox-Ross-Rubinstein model
converge to Black-Scholes option pricing model probabilities and prices, and how termi-
nal stock returns in the multi-period binomial tree numerically converge in probability
to the normal density function. We provide concluding remarks in the final section of
the paper.

2 The Single-Period Model

Single-period option pricing models based upon delta hedging and replicating portfolio
approaches appear in many investment textbooks. We review those models here to in-
troduce our notation, and to provide a complete teaching lesson plan that an instructor
can use to illustrate the economic principle of risk-neutral valuation and the convergence
from the single-period, binomial options to the continuous-time Black-Scholes option
pricing model. The purpose of this section is not to produce new or novel insights about
the binomial model; rather, it is to set the stage for use of the employee compensa-
tion example to illustrate (i) the origin of risk-neutral valuation from the delta hedging
and replicating portfolio approaches and (ii) the convergence from the binomial option
pricing model to the Black-Scholes option pricing model.

2.1 Delta Hedging Approach

Suppose the student initially applies the delta hedging approach to determine the value
of the option component of Company B’s compensation offer. The current price per
share of Company B’s stock is S, and one time-step (δt) from now, the stock will
assume one of the following two values: Su = uS or Sd = dS, where u > 1 and d <
1. We assume that S = $50, u = 1.25, d = .8, δt = 1 (one year), the exercise price
K = $60, and the continuously compounded riskless rate of interest r = 3%. Figure
1 shows the binomial “tree” for the current (known) stock price and also the future

3 While leading financial derivatives textbooks by Hull (2015) and McDonald (2013) also empha-
size risk-neutral valuation, Hull (pp. 274-280) motivates risk-neutral valuation via the delta hedging
approach, whereas McDonald (pp. 293-300) motivates risk-neutral valuation via the replicating port-
folio approach. Here, we clarify how the delta hedging and replicating portfolio approaches both
represent sufficient conditions for a risk-neutral valuation relationship to exist between an option
and its underlying asset.
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(state-contingent) stock prices, and Figure 2 shows the binomial tree for the current
(unknown) call option price and also the future (state-contingent) call option prices.

Next, the student forms a “hedge” portfolio comprising a long position in one call
option and a short position in ∆ shares of stock. This portfolio is called a hedge portfolio
because movements in the stock’s value hedge, or offset the effect of movements in the
call option’s value. The current market value of this hedge portfolio is

VH = C −∆S = C −∆50. (1)

At the up (u) node, the value of the hedge portfolio is equal to V u
H = Cu − ∆Su =

2.50 −∆62.50, and at the down (d) node, the value of the hedge portfolio is equal to
V d
H = Cd − ∆Sd = 0 − ∆40. Suppose we solve for ∆ such that the hedge portfolio is

riskless; i.e., V u
H = V d

H . Since V u
H = V d

H , this implies that 2.50 −∆62.50 = −∆40 and
∆ = 0.111. Substituting ∆ = 0.111 back into the expressions for V u

H and V d
H , we find

that V u
H = V d

H = −$4.44. An example of this solution for a whiteboard/presentation
slide explanation appears in Figure 3. Thus, the terminal value of a riskless hedge
portfolio comprising one call option and a short position in one-ninth of a share of
stock is equivalent in value to a short position in a “synthetic” riskless bond worth
$4.44 one year from now, and the present value of this short bond position is VH =
−4.44e−.03 = −$4.31.

Even though the call option and the stock have completely different cash flow char-
acteristics than a riskless bond, the riskless hedge portfolio comprised of these two
securities creates a “synthetic” riskless bond in the sense that its cash flows mimic
the riskless bond cash flows. Under no-arbitrage conditions, the price of the synthetic
bond must equal the price of the actual bond with the same payoffs. So, for a given
stock price, the price of the call option which satisfies this no-arbitrage condition is the
arbitrage-free price. Since VH = C−(0.111) 50, this implies that the arbitrage-free price
for the call option is C = $1.24, which implies that the proposed option compensation is
worth 5,000 x $1.24, or $6,200. Since the value of the Company A’s $60,000 salary-only
offer exceeds the value of Company B’s salary ($50,000) plus option ($6,200) offer, our
student will prefer Company A’s offer, unless the student is risk-loving or assumes a
different probability distribution than the one presented here.

While we would not expect a firm to offer a put option as part of a compensation
package to a prospective employee, it is worthwhile to consider how to price of an
otherwise identical put option with an exercise price of $60. Since the arbitrage-free
price for the call option is $1.24, we rely upon the put-call parity equation (Stoll (1969))
to determine the arbitrage-free price of an otherwise identical put option.

The put-call parity equation is shown in equation (2):

C +Ke−rδt = P + S. (2)

Thus,
P = C +Ke−rδt − S = $1.24 + 60e−.03 − $50 = $9.47. (3)

We can also determine the arbitrage-free price for the put option via the delta
hedging approach. Since price movements for a put option and its underlying stock
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are inversely related, we form a hedge portfolio comprising a long position in one put
option and a long position in ∆ shares of stock. The current value of this portfolio is

VH = P + ∆S = P + ∆50. (4)

At node u, the hedge portfolio is worth V u
H = Pu+∆Su = Max (K − 62.50, 0)+∆62.50

= 0+∆62.50, and at node d, the value of the hedge portfolio is equal to V d
H = Pd+∆Sd

= Max (K − 40, 0)+∆40 = 20+∆40. Suppose we select ∆ such that the hedge portfolio
is riskless; i.e., V u

H = V d
H implies that ∆62.50 = 20 + ∆40; thus ∆ = 0.889. Substituting

∆ = 0.889 back into the expressions for V u
H and V d

H , it follow that V u
H = V d

H = 55.56.
These calculations can be shown on a whiteboard/presentation slide similar to Figure 3.
Thus, the terminal value of a riskless hedge portfolio comprising one put option and a
long position in eight-tenths of a share of stock is equivalent in value to a long position
in a synthetic riskless bond worth $55.56 one year from now. The present value of this
long bond position is VH = $55.56e−.03 = $53.91, which implies that P = $9.47.

In the next section, we explore an alternative approach to option valuation. Rather
than infer the value of an option by pricing a synthetic riskless bond, we infer option
value by calculating the values of “synthetic” options created with combinations of the
underlying stock and a riskless bond.

2.2 Replicating Portfolio Approach

Another way for the student to determine the value of the call option is to create a
replicating portfolio. Under this trading strategy, the student replicates the call option
payoffs at nodes u and d by purchasing ∆ shares of stock today and financing part
of this investment by borrowing money. The current market value of the replicating
portfolio must equal the current market value of the option; if the replicating portfolio
and the option have different market values, the student can earn positive profits with
zero risk and zero net investment by buying the less expensive investment and shorting
the more expensive one. Thus, we invoke the no-arbitrage condition to establish that
the arbitrage-free price of the call option must equal the value of its replicating portfolio.

To replicate the payoffs of the call option, the student forms a hypothetical portfolio
comprising ∆ shares of stock and $B in riskless bonds. The initial cost of forming such
a portfolio is $ (∆S +B) . When the option expires, its value depends on whether the
stock price goes up or down, as shown in equations (5) and (6):

Cu = ∆uS + erδtB, and (5)

Cd = ∆dS + erδtB. (6)

Note that the first term in equation (5) represents the value of the underlying stock at
node u (uS) multiplied by the number (or fraction) of shares held in the underlying
stock. The second term represents the future value of the bond, assuming continuous
compounding at the annual rate of r during the δt time interval. Equation (6) provides
the corresponding value of the replicating portfolio at node d. The student will deter-
mine how many shares to purchase, and how much to borrow by solving equations (5)
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and (6) for ∆ and B :

∆ =
Cu − Cd
S (u− d)

≥ 0, and (7)

B =
uCd − dCu
erδt (u− d)

≤ 0. (8)

Note that the equalities in equations (7) and (8) only hold when Cu = Cd = 0; i.e.,
only if the call option always expires out of the money. Otherwise, ∆ > 0 and B < 0;
i.e., node u and d call option payoffs correspond to payoffs at these same nodes on
a margined investment in the stock based on the ∆ and B values calculated using
equations (7) and (8).

Next, let’s reconsider these equations in light of our numerical example. From equa-

tions (7) and (8), ∆ =
Cu − Cd
S (u− d)

= .111 and B =
uCd − dCu
erδt (u− d)

=
1.25 (0)− .8 (2.5)

e.03 (.45)
=

−4.31. Note that ∆ here is the same as the ∆ calculated under the delta hedging ap-
proach, and the value of B is the same as the value of VH in the earlier approach. These
equations can be worked out on a whiteboard/presentation slide as shown in Figure 4.
Thus, the student can replicate the call option by purchasing one-ninth of a share of
stock for $5.55 and borrowing $4.31. Since the value of the replicating portfolio is
$ (∆S +B) = $5.55 - 4.31 = $1.24, this must also be the arbitrage-free value of the call
option. Therefore, the decision regarding the choice between Company A’s and Com-
pany B’s compensation offers is exactly the same as the result obtained in the previous
section; since Company A’s salary-only offer is worth more than Company B’s salary
plus option compensation package, our student will find Company A’s salary offer more
financially attractive.

Following similar logic, we can determine the value of the replicating portfolio for
the put option. Suppose we form a portfolio comprising ∆ shares of stock and $B in
riskless bonds. The initial cost of forming such a portfolio is $ (∆S +B) . At expiration,

Pu = ∆uS + erδtB, and (9)

Pd = ∆dS + erδtB. (10)

Solving equations (9) and (10) for ∆ and B, we get:

∆ =
Pu − Pd
S (u− d)

≤ 0, and (11)

B =
uPd − dPu
erδt (u− d)

≥ 0. (12)

Note that the equalities in equations (11) and (12) only hold when Pu = Pd = 0; i.e.,
only if they put option always expires out of the money. Otherwise, ∆ < 0 and B > 0;
i.e., put option payoffs correspond to payoffs at these same nodes on an investment
comprising a short position in the stock, coupled with a long position in a riskless bond
based on ∆ and B values calculated using equations (11) and (12).
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Next, let’s reconsider these equations in light of our numerical example. From

equations (11) and (12), ∆ =
Pu − Pd
S (u− d)

= −20/22.50 = −.889 and B =
uPd − dPu
erδt (u− d)

=

1.25 (20)− .8 (0)

e.03 (.45)
= $53.91. Thus, we can replicate the put option by shorting eight-

ninths of a share for $44.44 and lending $53.91. Since the value of the replicating
portfolio is $ (∆S +B) = −$44.44 + $53.91 = $9.47, this must also be the arbitrage-
free price of the put option.

Although the delta hedging and replicating portfolio approaches to option valuation
are motivated differently, both approaches yield the same arbitrage-free prices for call
and put options. Note that neither the delta hedging approach nor the replicating
portfolio approach require the use of probabilities for calculating option prices. This
is a somewhat counter-intuitive result, since one would think the value of an option
should depend upon the probabilities of up and down movements in the value of the
underlying stock. This insight is important as we move forward with one more example
of a binomial pricing model approach which relies upon risk-neutral, or risk-adjusted
probabilities to calculate arbitrage-free option prices. As we show next, this approach
is a logical implication of both the delta hedging and risk-neutral valuation approaches.

2.3 Risk-Neutral Valuation Approach

Next, we consider the risk-neutral valuation approach to pricing options. This approach
is popular because of its simplicity. However, the most challenging aspect of this ap-
proach involves helping students understand where risk-neutral probabilities come from,
and what they mean in practice.

Thus far in this section of the paper, we have inferred arbitrage-free prices for call
and put options by either creating a synthetic riskless bond (via the delta hedging
approach) or by creating synthetic call and put options (via the replicating portfolio
approach). Investor risk preferences are not a factor when arbitrage-free prices are
formed, because we eliminate risk under both trading strategies. Arbitrage-free prices
obtain so long as investors take advantage of opportunities to earn riskless arbitrage
profits. Therefore, since the valuation relationship between an option and its under-
lying asset does not depend upon investor risk preferences, we may price options as
if investors are risk-neutral. This idea is a foundational principle for the risk-neutral
valuation approach.

We begin our analysis by showing the relationship which exists between the ex-
pected return on the underlying stock (µ), the probability of an up move (p), and the
probability of a down move (1-p). Note that

E (Sδt) = puS + (1− p) dS = eµδtS, (13)

where E (Sδt) corresponds to the expected value of the stock price at expiration and µ
corresponds to the annualized expected return on the stock. Solving equation (13) for
p, we find that

p =

(
eµδt − d

)
(u− d)

. (14)
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We present a whiteboard/presentation slide example of solving for µ from equation (14)
in Figure 5.

Suppose that investors are risk-averse and that the probability of an up move

is p = 0.60. Solving equation (14) for µ, we find that µ =
ln (pu+ (1− p) d)

δt
=

ln (.6 (1.25) + (.4) .8)

1
= 6.77%. Given these probabilities and payoffs, risk-averse in-

vestors demand an (annualized) expected rate of return on the risky stock that exceeds
the riskless rate of interest by 3.77 percentage points. This additional return over and
above the riskless rate of interest corresponds to a risk premium that compensates
risk-averse investors for bearing risk.

Now suppose that investors are risk-neutral. In a risk-neutral market, the expected
return on a risky asset is the same as the expected return on a riskless asset, because
risk-neutral investors do not demand a risk premium; i.e., µ = r. Thus, the expected
stock price in a risk-neutral market, one time-step from now is:

Ê (Sδt) = quS + (1− q) dS = erδtS, (15)

where Ê (Sδt) corresponds to the risk-neutral expected stock value, q corresponds to
the risk-neutral probability of an up move, and (1-q) corresponds to the risk-neutral
probability of a down move. Comparing the right-hand sides of equations (13) and (15),
we replace µ with r because µ = r in a risk-neutral market. Solving equation (15) for
q, we find that

q =
erδt − d
(u− d)

=
e.03 − .8

(.45)
= .5121. (16)

By using risk-neutral probabilities q and 1-q rather than risk-averse probabilities p
and 1-p, this ensures that the risk-neutral expected stock value Ê (Sδt) will be less than
E (Sδt) by an amount that corresponds to the dollar value of the risk premium. Since
E(Sδt) = Seµδtand Ê(Sδt) = Serδt, the dollar value of the risk premium is E(Sδt) −
Ê(Sδt) = Se(µ−r)δt = $50e(.0677−.03)1 = $1.98. Because q and 1-q are rescaled from p and
1-p in such a way that removes the effect of risk aversion, the initial stock price S can be
recovered by discounting Ê (Sδt) at the riskless rate of interest; i.e., S = Ê(Sδt)e

−rδt =
(quS + (1− q)dS)e−rδt = (.5121($62.50) + .4879($40))e−.03 = ($51.52).9704 = $50.

Next, we calculate the risk-neutral expected values of the call and put option payoffs
at expiration by weighting these payoffs by their corresponding risk-neutral probabili-
ties:

Ê (Cδt) = qCu + (1− q)Cd, and (17)

Ê (Pδt) = qPu + (1− q)Pd, (18)

where Ê (·) corresponds to the risk-neutral expected value operator. Here, Ê (Cδt) and
Ê (Pδt) represent the risk-neutral expected values for the call and put option payoffs
at expiration. By discounting Ê (Cδt) and Ê (Pδt) at the riskless rate of interest, we
obtain the current arbitrage-free prices for these (single time-step) European call and
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put options:4

C = e−rδtÊ (Cδt) = e−rδt [qCu + (1− q)Cd] = e−.03 [.5121 (5)] = $1.24, and (19)

P = e−rδtÊ (Pδt) = e−rδt [qPu + (1− q)Pd] = e−.03 [.4879 (20)] = $9.47. (20)

Since the risk-neutral valuation approach follows as a logical corollary of the delta
hedging and replicating portfolio approaches, arbitrage-free prices under risk-neutral
valuation must be the same as prices obtained using the delta hedging and replicating
portfolio approaches. The decision regarding the choice between the call option or the
bonus remains the same as when we created replicating portfolios and synthetic options;
since the Company A’s salary-only offer is worth more than Company B’s salary plus
option compensation package, our student will find Company A’s compensation offer
more financially attractive.

2.4 Risk-neutral Valuation and the Delta Hedging Approach

The student may not understand how three different approaches lead to exactly the
same conclusion and wishes to better understand the logical connections that exist be-
tween the risk-neutral valuation approach and the delta hedging and replicating port-
folio approaches. In the next two sections, we show how delta hedging and portfolio
replication imply risk-neutral valuation.

Previously, we formed a hedge portfolio comprising a long position in one call option
and a short position in ∆ shares of stock. At the beginning of the binomial tree, the

hedge portfolio value (as shown by equation (1)) is VH = C−∆S. Since ∆ =
Cu − Cd
S (u− d)

(see equation (7)),

VH = C −∆S = C − Cu − Cd
S (u− d)

S = C − Cu − Cd
(u− d)

. (21)

At expiration, the value of the hedge portfolio will be the same, no matter whether the

stock moves up or down: i.e., V u
H = V d

H implies that Cu −
Cu − Cd
(u− d)

u = Cd −
Cu − Cd
(u− d)

d.

Thus, the arbitrage-free value of the hedge portfolio, VH , corresponds to the present

value of either V u
H or V d

H (let’s go with V u
H): i.e., VH = C − Cu − Cd

(u− d)
implies that

C =
Cu − Cd
(u− d)

+ e−rδt
[
Cu −

Cu − Cd
(u− d)

u

]
. Solving for the arbitrage-free price of the call

4 Note that equations (19) and (20) contain equations (17) and (18) respectively, discounted at the
riskless rate of interest.
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option, we find that

C =
Cu − Cd + [(u− d)Cu − uCu + uCd] e

−rδt

u− d
=

Cu − Cd − dCue−rδt + uCde
−rδt

u− d
= e−rδt

[
erδt − d
u− d

Cu +
u− erδt

u− d
Cd

]
= e−rδt [qCu + (1− q)Cd] . (22)

The risk-neutral valuation relationship shown in equation (22) is identical to the risk-
neutral valuation relationship shown in equation (19). Thus, the delta hedging approach
implies that a risk-neutral valuation relationship exists between a call option and its
underlying stock. By symmetry, the analysis shown here also validates that a risk-
neutral valuation relationship exists between a put option and its underlying stock (cf.
equation (20)).

2.5 Risk-neutral Valuation and the Replicating Portfolio Ap-
proach

Next, we show how the replicating portfolio approach implies risk-neutral valuation.
As shown previously, the replicating portfolio was valued VRP = ∆S + B, where ∆ =
Cu − Cd
S (u− d)

and B =
uCd − dCu
erδt (u− d)

(cf. equations (7) and (8)). Thus,

C =
Cu − Cd
S (u− d)

S +
uCd − dCu
erδt (u− d)

=
erδt (Cu − Cd) + uCd − dCu

erδt (u− d)

= e−rδt
Cu
(
erδt − d

)
+ Cd

(
u− erδt

)
(u− d)

.

(23)

Since q =
erδt − d
u− d

and 1 − q =
u− erδt

u− d
, substituting q and 1−q into the right-hand

side of equation (23) yields:

C = e−rδt [qCu + (1− q)Cd] . (24)

Thus, the replicating portfolio approach implies that a risk-neutral valuation relation-
ship exists between a call option and its underlying stock. By symmetry, the analysis
shown here also validates that a risk-neutral valuation relationship also exists between
a put option and its underlying stock (cf. equation (20)).

Now that the logical coherence of the risk-neutral valuation, delta hedging, and
replicating portfolio approaches to pricing options in a single-period framework has been
shown, our next task involves expanding the risk-neutral valuation model to incorporate
multiple periods.
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3 The Multi-Period Model

In the previous section of the paper, we assumed that the student’s option-based com-
pensation will expire after a single one-year period. In this section, we expand the
model to allow for multiple periods prior to expiration. We will expand the risk-neutral
valuation model to two or more periods, and then show how it generalizes to the Cox-
Ross-Rubinstein binomial option pricing formula.

Suppose that the student now wishes to determine the value of an otherwise identical
call option for 5,000 shares of Company B’s stock, expiring after two one-year periods.
Figure 6 shows the binomial tree for the current and future stock prices at the up (u),
down (d), up-up (uu), up-down (ud), and down-down (dd) nodes, whereas Figure 7
shows the binomial tree for the current and future call option prices at nodes u, d, uu,
ud, and dd. The student will begin at the terminal (uu, ud, and dd) nodes shown in
Figure 7, and apply the risk-neutral valuation formula in equation (19) to determine
arbitrage-free prices for Cu, Cd, and C. This solution procedure is commonly referred
to as “backward induction”, since it requires working backwards from the terminal
state-contingent values of the call option to the present.

In Figure 7, since the stock only finishes in-the-money at the uu node, Cuu =
$78.13 − $60 = $18.13, whereas Cud = Cdd = $0. Thus, the arbitrage-free call
option price at node u (based on the node u version of equation (19)), is Cu =
e−rδt [qCuu + (1− q)Cud] = e−.03 [.5121 ($18.13)] = $9.01. Since Cud = Cdd = $0, it
also follows that Cd = $0. Applying equation (19) once again, the student determines
that the current arbitrage-free price of the call option is C = e−rδt [qCu + (1− q)Cd] =
e−.03 [.5121 ($9.01)] = $4.48.5 Note that the two-period price is over three times the
single-period price of $1.24. It is well-known that the value of a call option increases
as the time to maturity increases. This results from the fact that the underlying asset
has more time to increase in value, thus increasing the value of the option if it expires
in-the-money. Returning to our compensation example, we can see that an otherwise
identical call option expiring in two years rather than one year is now worth $22,400,
making Company B’s offer $12,400 more appealing than Company A’s offer.

Although backward induction is required to price the call option via under the
delta hedging and replicating portfolio approaches, it is unnecessary under risk-neutral
valuation. Since the call option included as part of Company B’s compensation package
is assumed to be European and may only be exercised at expiration, intermediate node
prices for the option (such as Cu and Cd) are not needed to find the current arbitrage-
free option price (C ), since the value for C depends solely on the terminal values of the
option. Therefore, the student only needs to undertake the following three steps: 1)
calculate the risk-neutral probability for each node at the expiration date, 2) calculate
the risk-neutral expected value of the option at expiration, and 3) discount the risk-

5 Since the two-period call option price is $4.48, we can determine the price of an otherwise identically
configured put option by applying a two-period version of the put-call parity equation given by
equation (2); given that C +Ke−rδt = P +S for one period, the two-period version of this equation
is C +Ke−2rδt = P + S ⇒ P = C +Ke−2rδt − S ⇒ P = $4.47 + $60e−2(.03) − $50 = $10.98.
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neutral expected value to present value at the riskless rate of interest for the number
of periods to expiration.

The valuation of a multi-period option value (with a few periods) is straightforward
for most students. However, understanding that process requires the building blocks
shown above (including the delta hedging and replicating portfolio approaches). Once
the basic multi-period risk-neutral valuation model is grasped by students, the next
step is to introduce them to the Cox, Ross, and Rubinstein (1979) approach to pricing
options.

The complexity of analysis grows with each additional time-step. Fortunately, Cox,
Ross, and Rubinstein (CRR) greatly simplify the analysis with their recursive multi-
period call option pricing formula which appears in equation (25):

C = e−rT

[
n∑
j=0

(
n
j

)
qj (1− q)n−j Cj

]
. (25)

In equation (25),

(
n
j

)
=

n!

j! (n− j)!
indicates how many j up and n− j down move

path sequences exist in an n time-step binomial tree and T = nδt corresponds to a
fixed expiration date T periods from now. Since qj(1− q)n−j corresponds to the risk-
neutral probability of a single j up and n − j down move path sequence, the product(
n
j

)
qj(1− q)n−j indicates the risk-neutral probability of the stock price ending up at

the j, n−j terminal node.6 Furthermore, Cj corresponds to the payoff on the call option
after n time-steps and j up moves; i.e., Cj = Max [0, ujdn−jS −K] . The CRR model
is considered to be the canonical binomial option pricing model; besides being the best-
known and most cited binomial model, the CRR model also provides a simple matching
of volatility with the u and d parameters. 7 Furthermore, since ud = 1.25 × 0.8 = 1

in our numerical example, the CRR model implies that σ =
lnu√
δt

= .2231.

Here, we recognize that quantitatively challenged students might struggle with un-
derstanding the multi-period CRR call option pricing formula in equation (25). Thus,
we suggest an optional, brief tutorial for using summation notation in this problem.
Suggested whiteboard/presentation slide content appears in Figure 8. Such students
might also appreciate a plain-language reading of equation (25), such as, “The value
of a call option is the present value of the weighted average of the values of the call
option at expiration, where the weightings represent the risk-neutral probabilities of
arriving at each terminal node. Thus, today’s call option price is the present value of
this weighted average, discounted at the riskless rate of interest.”

6 Trivially, the risk-neutral probabilities associated with the n + 1 terminal nodes sum to 1; i.e.,
n∑
j=0

(
n
j

)
qj(1− q)n−j = 1.0.

7 Specifically, since u = eσ
√
δt and d = e−σ

√
δt =

1

u
, the variance of stock returns is σ2δt (cf. Hull

(2015), pp. 286-287).
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Suppose n = 1, in which case there is only one time-step and the length of the
time-step is δt = T. Then equation (25) may be rewritten in the following manner:

C = e−rT

[
1∑
j=0

(
1
j

)
qj(1− q)1−jCj

]
= e−rT [(1− q)C0 + qC1] = e−rT [(1− q)Cd + qCu] .

(26)
Equation (26) is a special case of equation (25), where n = 1. Now suppose that n =
2. Then,

C = e−rT

[
2∑
j=0

(
2
j

)
qj(1− q)2−jCj

]
= e−rT

[
(1− q)2C0 + 2q (1− q)C1 + q2C2

]
= e−rT

[
(1− q)2Cdd + 2q (1− q)Cud + q2Cuu

]
.

(27)
Equation (25) can be further simplified by rewriting it in such a way which makes it

possible to ignore all cases in which the call option is at- or out-of-the-money. However,
we need to know the minimum number of “up” moves required during n time-steps
in order for this to occur. Since the payoff on the call option after n time-steps and
j up moves is Cj = Max (0, ujdn−jS −K), we need to determine the minimum (non-
negative) integer value for j such that the call option will expire in-the-money; i.e., so
that ujdn−jS > K. Let b represent the non-integer value for j such that the value of
the underlying asset would be equal to K at expiration; i.e., ubdn−bS = K. Solving this
equation for b,

ln
(
ubdn−bS

)
= lnK

blnu+ (n− b) lnd = ln (K/S) ;
bln (u/d) = ln (K/Sdn) ;
b = ln (K/Sdn) /ln (u/d) .

(28)

Thus, the minimum integer value for j such that the call option will expire in-the-
money is a, where a is the smallest (non-negative) integer that is greater than b. If
a = 0, this implies that all the call option payoffs at the end of the tree are positive.
If a = n, then the only node at which a call option pays off is when there have been
n consecutive up moves. In theory, a can exceed n; in that case, the call will always
expire out of the money and therefore worthless.

Since ujdn−jS −K > 0 for all j ≥ a, equation (25) can be re-written as follows:

C = SB1 −Ke−rTB2, (29)

where B1 =

[
n∑
j=a

(
n
j

)
qj (1− q)n−j

(
ujdn−je−rT

)]
, B2 =

[
n∑
j=a

(
n
j

)
qj (1− q)n−j

]
,

0 ≤ B1 ≤ 1, and 0 ≤ B2 ≤ 1. Note that B1 represents the hedge ratio for the binomial
option pricing model and B2 represents the (risk-neutral) binomial probability that
the option will expire in-the-money. Furthermore, SB1 corresponds to today’s value of
the underlying asset component of the replicating portfolio, whereas −Ke−rTB2 corre-
sponds to today’s value of the margin account used to partially finance the underlying
asset component of the replicating portfolio.
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Equation (29) resembles the Black-Scholes formula for pricing a European call op-
tion. The Black-Scholes formula is given in equation (30):

C = SN (d1)−Ke−rTN (d2) , (30)

where d1 =
ln (S/K) + (r + .5σ2)T

σ
√
T

, d2 = d1 − σ
√
T , and N(d1) and N(d2) correspond

to the standard normal distribution function evaluated at d1 and d2 respectively. Like
B1 and B2, N(d1) and N(d2) are bounded from below at 0 and from above at 1. Note
that in the “limiting” case (where T = nδt remains a fixed value as n → ∞ and
δt → 0), then B1 converges in value to N(d1) and B2 converges in value to N(d2).
Thus, the interpretations offered in the previous paragraph for B1, B2, SB1, and
−Ke−rTB2 also apply to N(d1), N(d2), SN(d1), and −Ke−rTN(d2).

The convergence of the Cox-Ross-Rubinstein binomial option pricing formula in
equation (29) and the Black-Scholes option pricing formula in equation (30) can be
shown analytically and numerically. For analytic proofs of how probabilities and prices
under the CRR binomial model converge to Black-Scholes probabilities and prices, see
Cox, Ross, and Rubinstein (1979) and Hsia (1983). Rendleman and Bartter (1979)
independently derive a similar binomial model to that of CRR and provide an analytic
proof of the convergence of their model to Black-Scholes in an appendix to their paper.
Joshi (2011) also considers various binomial models other than CRR and shows that
while the CRR ud = 1 assumption is analytically convenient, it is unnecessary to get
convergence to Black-Scholes. In the next section of the paper, we will numerically
illustrate the convergence of the CRR model to the Black-Scholes option pricing model,
and leave analytic illustration for graduate-level courses.

4 Convergence: Numerical

In a spreadsheet model, we numerically illustrate Black-Scholes and CRR model prices
based on our employee stock option example in which S = $50, K = $60, r = 3%,
T = 2 years, σ = .2231, and the option is for 5,000 shares of Company B’s stock.8

Applying the Black-Scholes formula provided in equation (30), we find that d1 =
ln (S/K) + (r + .5σ2)T

σ
√
T

=
ln (60/50) + (.03 + .5(.22312) 2

.2231
√

2
= −.230, d2 = d1 − σ

√
T =

−.230 − .2231
√

2 = −.545, N(d1) = N(−.230) = .409, and N(d2) = N(−.540) =
.293. Thus, the value of a call option to purchase one share of Company B’s stock is
$3.91 (as indicated by the Black-Scholes model), and the value of the option component
of Company B’s compensation offer is $19,550.

In Table 1, we list CRR model probabilities and prices (based on equation (29))
along with the fixed Black-Scholes model probabilities and price (based on equation
(30)) obtained from the spreadsheet model. This table shows that as the number of
time-steps increases, the frequency at which the call option expires in-the-money at

8 This spreadsheet model is available at https://bit.ly/options econ converge.
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end-of-tree nodes (as shown by B2) also varies. The CRR probabilities (as shown in
the B1 and B2 columns) and CRR model prices swing back and forth as time-steps
are added. These swings become less attenuated as the number of time-steps increase,
converging toward the Black-Scholes probabilities (N (d1) = 0.409 and N (d2) = 0.293)
and $3.91 price. Figure 9 illustrates the convergence in price and Figure 10 illustrates
the convergence in probability. Many of the results obtained from our spreadsheet
model (including the “sawtooth” image present in Figure 10) are explained in greater
detail by Feng and Kwan (2012).

Similarly, we can show that standardized log returns (with a mean of zero and stan-
dard deviation of one) on the underlying asset also converge to the standard normal
distribution. Figure 11 shows histograms and corresponding density functions using
the same parameter values as in Table 1 and in Figures 9 and 10, while allowing n
= {10, 50, 500, and 5,000} and holding T = nδt constant. These probability density
function charts show convergence from the discrete distribution to the continuous dis-
tribution, which follows as a logical consequence of the central limit theorem: as the
number of time-steps becomes arbitrarily large, then the discrete distribution converges
in probability to the continuous distribution.

5 Conclusion

In this paper, we have provided a simple approach for introducing option pricing models
to undergraduate students. We have shown how the delta hedging and replicating
portfolio approaches to pricing call and put options imply that risk-neutral valuation
relationships exist between option prices and the prices of the underlying assets that
they reference. After showing the logical connections between these various approaches
in a single-period setting, we show how the risk-neutral approach generalizes to the
multi-period case that is captured by the CRR model. Finally, we show how in the limit
(as n → ∞ and δt → 0 for a fixed time to expiration), the prices and probabilities
which comprise the CRR pricing equation in equation (29) converge to the prices and
probabilities which comprise the Black-Scholes pricing equation in equation (30).

To further support instruction of option pricing models, we provide some class-
room tools, including a limited prospective employee compensation case study,9 white-
board/presentation slide examples that can help instructors explain and show the pro-
cess to their students and a spreadsheet which shows the convergence between the CRR
and Black-Scholes models (available at https://bit.ly/options econ converge).

9 Note that the non-tradability of employee stock options and various vesting rules provide further
opportunities to explore modifications to the Black-Scholes model. These are less tractable than the
model presented here, but the principles of convergence are the same.
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Table 1. Convergence of Cox-Ross-Rubinstein to Black-Scholes

Time
Steps

q B1 B2

CRR
Value N (d1) N (d2)

Black-
Scholes
Value

1 0.518 0.669 0.518 $4.17 0.409 0.293 $3.91
2 0.512 0.386 0.262 $4.48 0.409 0.293 $3.91
3 0.510 0.215 0.132 $3.29 0.409 0.293 $3.91
4 0.508 0.452 0.325 $4.22 0.409 0.293 $3.91
5 0.507 0.299 0.197 $3.82 0.409 0.293 $3.91
10 0.505 0.517 0.390 $3.83 0.409 0.293 $3.91
50 0.502 0.360 0.250 $3.89 0.409 0.293 $3.91
100 0.502 0.440 0.320 $3.91 0.409 0.293 $3.91
200 0.502 0.387 0.273 $3.91 0.409 0.293 $3.91
500 0.502 0.408 0.307 $3.91 0.409 0.293 $3.91
1000 0.502 0.400 0.285 $3.91 0.409 0.293 $3.91
5000 0.502 0.408 0.292 $3.91 0.409 0.293 $3.91

Note. – Binomial and Black-Scholes values and risk neutral probabilities of an option
with the following parameters: S=50, σ=0.2231, u=1.25, d=0.8, t=2, K =60, r =0.03.
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Figures

Figure 1. Single-Period Binomial Tree for the Current and Future Stock Prices

Figure 2. Single-Period Binomial Tree for the Current and Future Call Option Prices
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Figures (Continued)

Figure 3. Whiteboard Illustration for Finding Hedge Ratio and Present Value of
Hedge Portfolio
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Figures (Continued)

Figure 4. Whiteboard Illustration for Replicating Portfolio Calculations of ∆ and B

Figure 5. Whiteboard Illustration for Deriving Required Return Under Risk (µ)
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Figures (Continued)

Figure 6. Two-Period Binomial Tree for the Current and Future Stock Prices

Figure 7. Two-Period Binomial Tree for the Current and Future Call Option Prices
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Figures (Continued)

Figure 8. Whiteboard Example: Explanation of Equation (25) Summation Notation
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Figures (Continued)

Figure 9. Convergence of Cox-Ross-Rubinstein (CRR) to Black-Scholes Model (BSM)
Prices
Note. – Binomial and Black-Scholes values of an option with the following parame-
ters: S=50, σ=0.2231, u=1.25, d=0.8, t=2, K =60, r =0.03. Number of time-steps
represented on the x-axis.
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Figures (Continued)

Figure 10. Convergence of Cox-Ross-Rubinstein (CRR) to Black-Scholes Model (BSM)
Probabilities
Note. – Binomial and Black-Scholes risk neutral probabilities of an option with the
following parameters: S=50, σ=0.2231, u=1.25, d=0.8, t=2, K =60, r =0.03. Number
of time-steps represented on the x-axis.
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Figures (Continued)

Figure 11. Convergence of Standardized Log Returns under the Binomial Distribution
to the Standard Normal Density Function Note. – Parameters used: S=50, σ=0.2231,
u=1.25, d=0.8, t=2, K =60, r =0.03. Number of time-steps are 10, 50, 500, and 5,000.
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