Midterm Exam #1 Formula Sheet

- 1. Expected Utility of Wealth (E(U(W)))
 - $E(U(W)) = \sum_{s=1}^{n} p_s U(W_s)$, where $U(W_s) =$ state-contingent utility of wealth.
- 2. Expected Value (E(X)), Variance (σ_X^2), Standard Deviation (σ_X), Covariance (σ_{12}), and Correlation (ρ_{12}):
 - E(X) = ∑_{s=1}ⁿ p_sX_s, where p_s = the probability of state s and X_s = state s value for X;
 σ_X² = ∑_{s=1}ⁿ p_s(X_s E(X))², and σ_X = √σ_X²;
 σ₁₂ = ∑_{s=1}ⁿ p_s(X_{1s} E(X₁)) (X_{2s} E(X₂)), and ρ₁₂ = σ₁₂/σ₁σ₂.

3. Mean-Variance Theory

Mean-variance theory may be used to establish that $E(U(X_i)) > E(U(X_j))$ for arbitrarily risk averse utility functions *if and only if* 1) variance is a "complete" risk measure, and 2) one of the following conditions holds:

- $E(X_i) > E(X_j)$ and $\sigma_i^2 < \sigma_j^2$;
- $E(X_i) > E(X_j)$ and $\sigma_i^2 = \sigma_j^2$; or
- $E(X_i) = E(X_j)$ and $\sigma_i^2 < \sigma_j^2$.

4. Stochastic Dominance Theory

If risk X_i stochastically dominates risk X_j , then $E(U(X_i)) > E(U(X_j))$ for arbitrarily risk averse utility functions. Formal definitions for first and second order stochastic dominance are:

- <u>First Order Stochastic Dominance</u>: Investment *i* First Order Stochastic Dominates (FOSD) investment *j* if $F(X_{j,s}) \ge F(X_{i,s})$ for all *s*.
- <u>Second Order Stochastic Dominance</u>: Investment *i* Second Order Stochastic Dominates(SOSD) investment *j* if $\sum_{s=1}^{n} (F(X_{js}) - F(X_{is})) > 0$.
- 5. Two-asset portfolios: Expected Return, Standard Deviation, and Minimum Risk Portfolio Weighting Scheme
 - Expected Portfolio Return: $E(r_p) = w_1 E(r_1) + w_2 E(r_2)$.
 - <u>Portfolio Standard Deviation</u>: $\sigma_p = \sqrt{w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \sigma_{12}}$, where w_1 and $w_2 = 1 w_1$ correspond to the proportions of wealth invested in assets 1 and 2.
 - <u>Minimum Risk Portfolio Weighting Scheme</u>: $w_1 = \frac{\sigma_2^2 \sigma_{12}}{\sigma_1^2 + \sigma_2^2 2\sigma_{12}}$.