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(One Timestep)

Asset
u
d

q

dt

Interest rate
Discount factor
Strike

Risk Neutral Valuation
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$100
1.05
0.95
0.5418
0.0833
5%
0.9958
$100

Long Stock
Replicating Portfolio Borrowing
Net Value

Binomial Tree for a One-Step Call Option

Risk Neutral Valuation & Replicating Portfolio Approaches to Pricing a Call Option

One timestep expiration

before expiration




4 ™
Binomial Tree for a One-Step Put Option

Risk Neutral Valuation & Replicating Portfolio Approaches to Pricing a Put Option
(One Timestep)

Asset $100 One timestep expiration
u 1.05 before expiration

d 0.95
q 0.5418
dt 0.0833
Interest rate 5%
Discount factor 0.9958
Strike $100

Risk Neutral Valuation

Short Stock
Replicating Portfolio Lending

Net Value

a Lecture 15: Derivatives Theory (Part 2)




e
Put-Call Parity

European options cannot be exercised prior to the
expiration date; therefore, the portfolios must have identical

values today; i.e.,
c+Ke'rT:p + S.
® This equation represents the put-call parity relationship, aka

the "Fundamental Theorem of Financial Engineering”.

* Note that once we know the price of 3 out of 4 component
securities, then we can find the price of the 4t security. So
in the previous numerical example, once we calculated ¢ =
$2.70,thenp =c+ Ke'" - § = $2.70 + $99.58 - 100 =
$2.28.
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Agenda for Today

o Expanding the “binomial tree” to multiple

timesteps.

* Convergence of the multi-timestep
binomial formula to the Black-Scholes-

Merton formula

* Coming up: Application of Black-Scholes-

Merton to credit risk
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1-4 Time Step Call Option Prices

. n=1: By inspection, the call option is only in-the-money at the up (#)

node. For one timestep,

c=e¢""qe,1=0.9958(0.5418)(5) = $2.70.

. n = 2: By inspection, the call option is only in-the-money at the up-up (x#)

node. For two timesteps,

c=¢"""[g%c, 1= 0.9958°[.5418°(10.25)] = $2.98.

un

. n = 3: By inspection, the call option is only in-the-money at the up-up-up

(uuu) node and the up-up-down (##d) node. For three timesteps,
—3roty 3
[

c=¢e q cﬂ%ﬂ + 342 (1 o 4>€uﬂd]
=0.9958’ [(0.54183)(15.76) +3(0.5418%)(0.4582) (4.74)] =$4.36.

. n = 4: By inspection, the call option is only in-the-money at the up-up-up-

up (unnn) and up-up-up-down (uu#ud) node. For four timesteps,
c=¢"g",,, +4¢ (1=9)¢,.,]
=0.9958"| (0.5418")(21.55) + 4(0.54187)(0.4582)(9.97) | = $4.68.
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1-4 Time Step Put Option Prices

Having identified arbitrage-free prices for 1-
4 time step call options, we can apply the

put-call parity equation to determine

arbitrage-free prices for otherwise identical
(same underlying asset, exercise price, and

time to expiration) 1-4 time step put
options:

c+Ke ™ = p+S.
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The Cox-Ross-Rubinstein (CRR) call equation

* The complexity of analysis grows with each additional time-step.
Fortunately, Cox, Ross, and Rubinstein (CRR) provide a recursive multi-
period call option pricing formula:

RN n! J "~/
C=e¢ Z ; .'Q(l_Q) ..
/—Oj.(ﬂ_j)-
!
. -'( 7! -)' indicates how many path sequences exist for each of the 7 +1
g n= 7 )!

terminal nodes;

« ¢’ (1- q)”_j corresponds to the risk-neutral probability of one jup and

n— j down move path sequence;

7!

. — — ¢’ (1—¢)" indicates the risk-neutral probability of the stock
jM(n=7)

price ending up at the 7,7— ; terminal node;

* C = Max|0,s’d"”S - K]; and

* T'=ndt corresponds to a fixed expiration date T periods from now.
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The Cox-Ross-Rubinstein (CRR) call equation

 Since C = Max((),%j d785—K ) , we need to determine the minimum
number of up moves such that the call option expires in-the-money; 1.e.,
so that #’d"/ S > K.

* Let brepresent the non-integervalue for jsuch that #’d""S = K. Solving this
equation for 4,

In(#'d”"S)=1nK
bln%+(ﬁ—b)lnd = ln(K/S);
bln(%/d) = ln(K/Sd”);

b= ln(K/Sd”)/ln(ﬂ/d).

* The minimum znteger value for j is a, obtained by rounding to the nearest
integer greater than /.

e If =0, then the call is in-the-money at @/ 7+ 1 terminal nodes.

o If a= nt7, the call is out-of-the-money at a// » +1 terminal nodes.
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The Cox-Ross-Rubinstein (CRR) call equation

e Having determined the minimum number of up moves () required for
C >0, if follows that C >0 for ;j =a,...,n Then the risk neutral

valuation formula for pricing such an option is:

C =SB —Ke"'B,,

where
- A - n—7j ' i
B, = _ — |-¢/-(1—q)" (a’-d"7-¢"); and
1 w[/!(”—/)!j (1=0)" )
- 7! - _
B, = g’ (1-¢q)"".
2 ;[/'(ﬂ_j)'j q ( 4)
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The Black-Scholes-Merton (BSM) call equation

e Asin the previous slide, suppose the time to expiration T' = #0¢. Now
consider the “limiting” case where 7 — o and 07 — Ofor a fixed value of T.
When this occurs, the binomial risk neutral probabilities B, and B, that
appear in the CRR option pricing formula converge in probability to the
standard normal probabilities N(d,) and N(d,), where

In(S/K)+(r+.50°)T
= T

e Then the risk neutral valuation formula for pricing such an option is:
C =SN(d,)—Ke"" N(d,).
This formula was independently published by Black and Scholes and by
Merton 1n 1973, so 1t 1s commonly referred to as the BSM call option pricing
formula. Scholes and Merton were awarded the Nobel Prize for Economics

in 1997 for this discovery; Black was not named since he passed away in 1995
and the Nobel Prize is not posthumously given.
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The CRR and BSM put equations

e The CRR and BSM put equations are obtained by invoking the put-
call parity theorem. Since the only difference between these
equations 1s that CRR is based upon the standard binomial
distribution function (as captured by B; and B,) whereas BSM i1s
based upon the normal distribution function (as captured by N(d)
and N(d)), the CRR and BSM put equations are otherwise identical
to each other.

e According to the put call parity theorem, the BSM put equation is
p=c+Ke" =S
=SN(d)—Ke"N(d,)+Ke"" —§
=Ke " (1-N(d,))—S(1—N(d,)).
e By symmetry, it follows that the CRR put equation is
p=Ke" (1-B,)—S(1-B).
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6RR & BSM call and put prices - numerical examp@
Suppose S = $100, K =$100, 0 =.20, » = 2, 6 = .25, T = not = 2(.25) =5,
and »=.03. Also suppose that # =¢° O — gNB =g 1052, d = 1/u = .9048,
e}’é‘t _d
u—d
parameters?

and g = =.5126. What are the CRR call and put prices, given these

SOLUTION: Here’s the two-timestep stock tree:
$122.14

$110.52
$100.00 $100.00
$90.48

$81.87

Therefore, the only node at which this call 1s in-the-money is a node
specifically, ¢, = max[0,§, —K] =$22.14and ¢, =¢,, =0. Then
c=¢"" g%, 1=.9851(.5126" -$22.14) =$5.73, and
Lecture 15 Deizzaﬁxgs_'ll:“ge_orr]\ﬂIgar_tév - $573 + 3;9851 ) $1OO - $424
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CRR & BSM call and put prices — numerical example

What are the BSM call and put prices, given the parameters from the
preceding page?

SOLUTION: First calculate the standard normal probabilities N(d,) and
N(d,).

2
_In(S/K)+(r+.50")T _1n(100/100) +(03+.5040)).5 _ o0
0'\/? .2\/3
d,=d —oNT =.1768 — 245 =.0354.

dl

Thus, N(d,)= .5702 and N(d,)=.5141, and

c=SN(d)—Ke"N(d,) =100(.5702) —100¢""(.5141) = $6.37, and
p=Ke" (1-N(d,)—S(A—N(d,))) =100 (.4859) —100(.4298) = $4.88.
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model produces call and put prices of $5.73 and $4.24, compared with BSM model
prices of $6.37 and $4.88.

However since the standard binomial distribution functions (B; and By) converge in
probability to the standard normal distribution functions (IN(d) and N(d>)), CRR
and BSM prices also converge rather quickly. Here’s a table illustrating this for 1
through 5,000 timesteps occurring during the course of a 6-month time to

expiration:
Timesteps|BSM Call[BSM Put|CRR Call|CRR Put|Call Difference|Call % Diff|Put Difference
1 $6.3710(54.8822|57.7512|56.2624| -$1.3802 -21.66% -$1.3802
2 $6.3710(54.8822|55.7309|54.2421| $0.6401 10.05% $0.6401
5 $6.3710|54.8822|56.6501|55.1613| -$0.2791 -4.38% -50.2791
10 $6.3710|54.8822(56.2323|54.7435|  $0.1387 2.18% $0.1387
25 $6.3710(54.8822|56.4261|54.9373| -S0.0551 -0.86% -50.0551
50 $6.3710|54.8822(56.3430|54.8542| $0.0280 0.44% $0.0280
100 $6.3710|54.8822(56.3570|54.8682| $0.0140 0.22% $0.0140
200 $6.3710(54.8822(56.3640|54.8752|  $0.0070 0.11% $0.0070
400 $6.3710|54.8822(56.3675|54.8787|  $0.0035 0.05% $0.0035
5000 |S$6.3710(54.8822|56.3707|54.8819| $0.0003 0.00% $0.0003
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CRR & BSM call and put prices — numerical example

e When there are only two timesteps until expiration 6 months from now, the CRR




" Black-Scholes-Merton (BSM) is a
“limiting” case of CRR!

oSee the Cox-Ross-Rubinstein

model compared with the Black-

Scholes-Merton model spreadsheet!
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