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Binomial Tree for a One-Step Call Option
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Binomial Tree for a One-Step Put Option



Put-Call Parity
European options cannot be exercised prior to the 
expiration date; therefore, the portfolios must have identical 
values today; i.e.,

c + Ke-rT = p + S.
� This equation represents the put-call parity relationship, aka 

the "Fundamental Theorem of Financial Engineering”.
� Note that once we know the price of 3 out of 4 component 

securities, then we can find the price of the 4th security. So 
in the previous numerical example, once we calculated c = 
$2.70, then p = c + Ke-rT - S = $2.70 + $99.58 - 100 = 
$2.28.
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Agenda for Today
�Expanding the “binomial tree” to multiple 

timesteps.
�Convergence of the multi-timestep 

binomial formula to the Black-Scholes-
Merton formula

�Coming up: Application of Black-Scholes-
Merton to credit risk 
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Implications of even more Time Steps
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Implications of even more Time Steps
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1-4 Time Step Call Option Prices
1. n = 1: By inspection, the call option is only in-the-money at the up (u) 

node.  For one timestep, 
( )( )0.9958 0.[ 5418 5 $2.70.]r t

uc e qcd- == =  
2. n = 2: By inspection, the call option is only in-the-money at the up-up (uu) 

node.  For two timesteps, 
22 22 0.9958 [.5418 ([ ] 10. $2.9825)] .r t

uuc e q cd- == =  

3. n = 3: By inspection, the call option is only in-the-money at the up-up-up 
(uuu) node and the up-up-down (uud) node.  For three timesteps, 

( ) ( )3

3 3 2

3 20.9958 0.5418 15.76

[ 3 (

0.5418 4.74 $

1 ) ]

( ) 3( 4.36)(0.4582) .

r t
uuu uudc e q c q q cd-= + -

= +é ù =ë û
 

4. n = 4: By inspection, the call option is only in-the-money at the up-up-up-
up (uuuu) and up-up-up-down (uuud) node.  For four timesteps, 

( ) ( )4 4 3

4 4 3

0.9958 0.5418 21.5

[ 4 (1 ) ]

( ) 45 0.5418( )(0.4 9.97 $4.65 882) .

r t
uuuu uuudc e q c q q cd-=

é ù =ë û

+ -

= +
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1-4 Time Step Put Option Prices
Having identified arbitrage-free prices for 1-
4 time step call options, we can apply the 
put-call parity equation to determine 
arbitrage-free prices for otherwise identical 
(same underlying asset, exercise price, and 
time to expiration) 1-4 time step put 
options: 

 .rn tc Ke p Sd-+ = +
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The Cox-Ross-Rubinstein (CRR) call equation
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• The complexity of analysis grows with each additional time-step. 
Fortunately, Cox, Ross, and Rubinstein (CRR) provide a recursive multi-
period call option pricing formula:  
 

  

 •  indicates how many path sequences exist for each of the  

terminal nodes;  
•  corresponds to the risk-neutral probability of one j up and 

 down move path sequence;  

•  indicates the risk-neutral probability of the stock 

price ending up at the  terminal node;  
• ; and  
•  corresponds to a fixed expiration date T periods from now. 
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The Cox-Ross-Rubinstein (CRR) call equation
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• Since , we need to determine the minimum 
number of up moves such that the call option expires in-the-money; i.e., 
so that   

• Let b represent the non-integer value for j such that  Solving this 
equation for b,  
 

 

 
• The minimum integer value for j  is a, obtained by rounding to the nearest 

integer greater than b. 
• If a = 0, then the call is in-the-money at all  terminal nodes. 
• If a = n+1, the call is out-of-the-money at all  terminal nodes. 
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The Cox-Ross-Rubinstein (CRR) call equation
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• Having determined the minimum number of up moves (a) required for 
 if follows that  for  Then the risk neutral 

valuation formula for pricing such an option is: 
 

 
where  
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The Black-Scholes-Merton (BSM) call equation
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• As in the previous slide, suppose the time to expiration .T n td=  Now 
consider the “limiting” case where n ®¥  and 0td ® for a fixed value of T. 
When this occurs, the binomial risk neutral probabilities 1B  and 2B  that 
appear in the CRR option pricing formula converge in probability to the 
standard normal probabilities 1( )N d  and 2( )N d , where 

2

1
ln( / ) ( .5 )S K r Td

T
s

s
+ +

=  and 2 1 .d d Ts= -   

• Then the risk neutral valuation formula for pricing such an option is: 

1 2( ) ( ).rTC SN d Ke N d-= -  
This formula was independently published by Black and Scholes and by 
Merton in 1973, so it is commonly referred to as the BSM call option pricing 
formula. Scholes and Merton were awarded the Nobel Prize for Economics 
in 1997 for this discovery; Black was not named since he passed away in 1995 
and the Nobel Prize is not posthumously given. 
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The CRR and BSM put equations
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• The CRR and BSM put equations are obtained by invoking the put-
call parity theorem.  Since the only difference between these 
equations is that CRR is based upon the standard binomial 
distribution function (as captured by B1 and B2) whereas BSM is 
based upon the normal distribution function (as captured by N(d1) 
and N(d2)), the CRR and BSM put equations are otherwise identical 
to each other. 

• According to the put call parity theorem, the BSM put equation is 

1 2

2 1

( ) ( )

( )) (1 ((1 )).

rT

rT rT

rT

p c Ke S

SN d Ke N d Ke

Ke N

S

N d S d

-

- -

-

= +

= - +

-

-

-

-

= -

 

• By symmetry, it follows that the CRR put equation is 

2 1) (1 ).(1rTp Ke B S B-= - --   
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CRR & BSM call and put prices – numerical example

17

Suppose S = $100, K =$100, s =.20, n = 2, .25,td = 2(.25) .5T n td= = = , 
and r =.03.  Also suppose that .2 .25tu e es d= = = 1.1052, d  = 1/u = .9048, 

and .5126
r te dq
u d

d -
= =

-
.  What are the CRR call and put prices, given these 

parameters?   

SOLUTION: Here’s the two-timestep stock tree: 

  $122.14 
 $110.52  

$100.00  $100.00 
 $90.48  
  $81.87 

Therefore, the only node at which this call is in-the-money is a node uu; 
specifically, max[0, ]uu uuc S K= -  = $22.14 and 0.ud ddc c= =  Then  

-= = ×2 2[ ] .9851(.5126 $22.14)rT
uuc e q c  =$5.73, and 

rTp c e K S-= + -  = $5.73 + $98.51 - $100 = $4.24. 
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CRR & BSM call and put prices – numerical example
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What are the BSM call and put prices, given the parameters from the 
preceding page?   

SOLUTION: First calculate the standard normal probabilities 1( )N d  and 

2( )N d .
s

s
s

+ + + +
= = =

== - - =

2

1

2 1

ln( / ) ( .5 ) ln(100 /100) (.03 .5(.04)).5
.1768,  and

.2 .5
.1768 .2 .5 .0354.

S K r Td
T

d d T
  

Thus, 1( )N d = .5702 and 2( )N d =.5141, and 

.03(.5)
1 2

.03(.5)
2 1

( ) ( ) 100(.5702) 100 (.5141) $6.37,  and

(1 ( )) (1 ( )) 100 (.4859) 100(.4298) $4.88.

rT

rT

c SN d Ke N d e

p Ke N d S N d e

- -

- -

= - = - =

= - - - = - =
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• When there are only two timesteps until expiration 6 months from now, the CRR 
model produces call and put prices of $5.73 and $4.24, compared with BSM model 
prices of $6.37 and $4.88. 

• However since the standard binomial distribution functions (B1 and B2) converge in 
probability to the standard normal distribution functions (N(d1) and N(d2)), CRR 
and BSM prices also converge rather quickly.  Here’s a table illustrating this for 1 
through 5,000 timesteps occurring during the course of a 6-month time to 
expiration: 

Timesteps BSM Call BSM Put CRR Call CRR Put Call Difference Call % Diff Put Difference 
1 $6.3710 $4.8822 $7.7512 $6.2624 -$1.3802 -21.66% -$1.3802 
2 $6.3710 $4.8822 $5.7309 $4.2421 $0.6401 10.05% $0.6401 
5 $6.3710 $4.8822 $6.6501 $5.1613 -$0.2791 -4.38% -$0.2791 

10 $6.3710 $4.8822 $6.2323 $4.7435 $0.1387 2.18% $0.1387 
25 $6.3710 $4.8822 $6.4261 $4.9373 -$0.0551 -0.86% -$0.0551 
50 $6.3710 $4.8822 $6.3430 $4.8542 $0.0280 0.44% $0.0280 

100 $6.3710 $4.8822 $6.3570 $4.8682 $0.0140 0.22% $0.0140 
200 $6.3710 $4.8822 $6.3640 $4.8752 $0.0070 0.11% $0.0070 
400 $6.3710 $4.8822 $6.3675 $4.8787 $0.0035 0.05% $0.0035 

5000 $6.3710 $4.8822 $6.3707 $4.8819 $0.0003 0.00% $0.0003 

  

CRR & BSM call and put prices – numerical example
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Black-Scholes-Merton (BSM) is a 
“limiting” case of CRR!

�See the Cox-Ross-Rubinstein 
model compared with the Black-
Scholes-Merton model spreadsheet! 
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