Decision Making under Risk and Uncertainty (Part 4 of 4)



What we learned from the last lecture

- Using Arrow-Pratt to compare degree of risk aversion
- Broader Definitions of Risk and Risk Preference
- The game plan for today: Mean-Variance Analysis and Stochastic Dominance

EU Theory, MV Analysis, and SD Analysis

- Expected utility (*EU*) theory is the foundation for decision-making under risk and uncertainty.
- Although *EU* theory is elegant, a more practical, scientific (i.e., data-based) framework would be quite helpful as we seek to implement the *EU* model; i.e., can we find useful shortcuts to *EU*?
- Two shortcuts come to mind:
 - Mean-Variance (*MV*) Analysis
 - Stochastic Dominance (SD) Analysis

Mean-Variance (MV) Analysis

- *MV* analysis = *EU* analysis if variance is a "complete" risk measure and if:
 - E(x) > E(y) and σ_x² < σ_y²;
 E(x) > E(y) and σ_x² = σ_y²; or
 E(x) = E(y) and σ_x² < σ_y². (mean preserving spread)
 However, if E(x) > E(y) and σ_x² > σ_y², then MV analysis fails and we must rely on EU analysis!

Stochastic Dominance Analysis

- Dictionary definition of "stochastic":
 - Involving or containing a random variable or variables;
 - •Involving chance or probability.
- Stochastic dominance analysis involves evaluating risks by comparing their probability distributions.

Stochastic Dominance Analysis

- Stochastic dominance (SD) Analysis provides an alternative (less restrictive) framework (compared with MV).
 - *SD* makes it possible to evaluate a broader set of risks than the *MV* rule.
 - Stochastic Dominance evaluates risks independently of the specific trade-offs (between expected value, standard deviation, skewness, kurtosis, etc.) represented by an agent's utility function.

First Order Stochastic Dominance

- Consider two cumulative distribution functions of wealth (F(W) and G(W)) over some closed interval $I = [W_{\min}, W_{\max}]$.
- Then F(W) First Order Stochastic Dominates (FOSD) G(W) if $G(W) \ge F(W)$ for all W between W_{\min} and W_{\max} (with the inequality holding for some W).
- An important implication of *F FOSD G* is that $F FOSD \ G \to E_F[U(W)] > E_G[U(W)].$

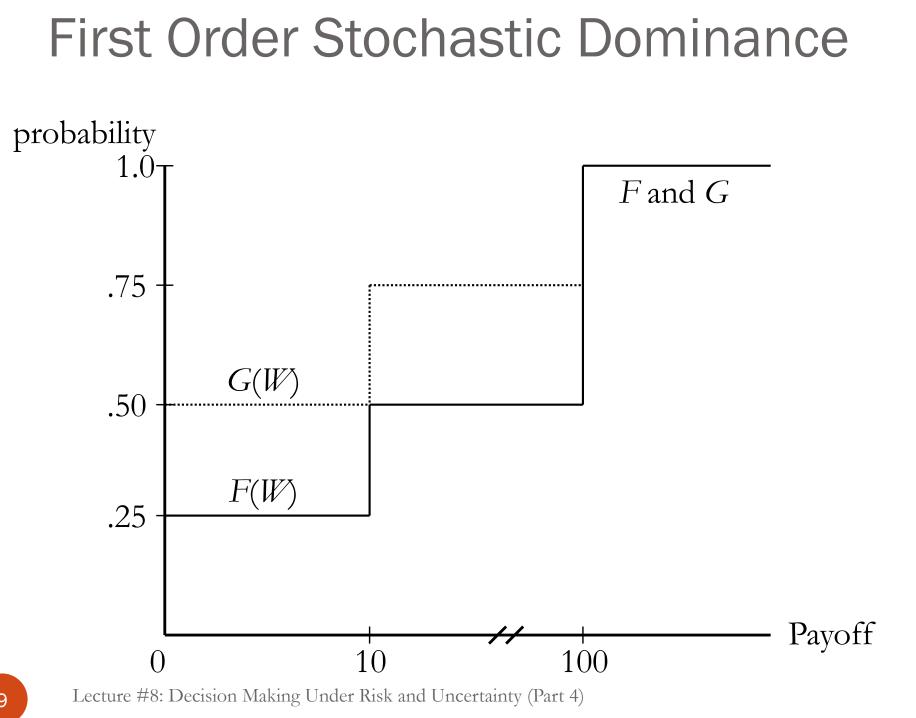
First Order Stochastic Dominance

• Example of *FOSD*: consider 2 assets with 3 payoffs:

W(s)	\$0	\$10	\$100
f(W(s))	0.25	0.25	0.5
g(W(s))	0.5	0.25	0.25

• The cumulative probability functions are:

W(s)	\$ 0	\$10	\$100
F(W(s))	0.25	0.5	1
G(W(s))	0.5	0.75	1



Second Order Stochastic Dominance

- First Order Stochastic Dominance is a very strong condition; Second Order Stochastic Dominance provides a less restrictive definition of dominance:
- F(W) Second Order Stochastic Dominates (SOSD) G(W) if

$$\sum_{s=1}^{n} \left(G(W_s) - F(W_s) \right) > 0.$$

An important implication of *F SOSD G* is that *F SOSD G → E_F[U(W)] > E_G[U(W)]*.

Also note that if *F FOSD G*, then *F SOSD G*.

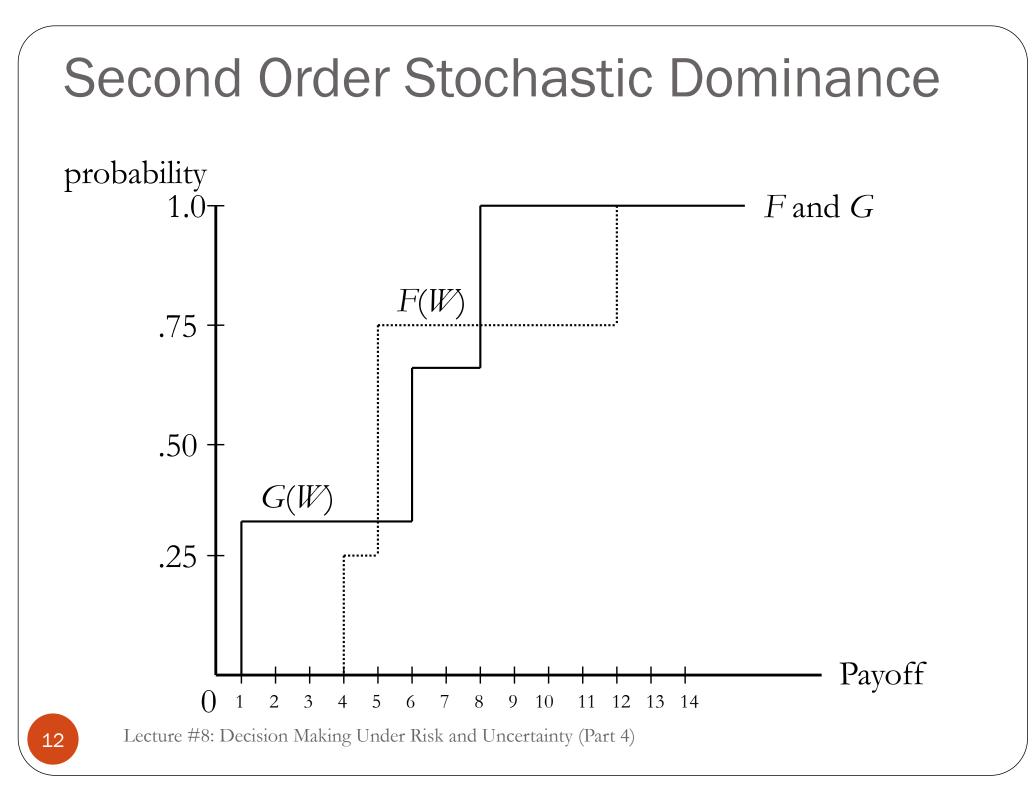
Second Order Stochastic Dominance

•Suppose there are two assets, asset F and asset G, that provide the following set of risky payoffs:

Asset F		Asset G		
W(s)	f(W(s))	W(s)	g(W(s))	
4	25%	1	33%	
5	50%	6	33%	
12	25%	8	33%	

•The cumulative probability functions for F and G are:

Asset F		Asset G		
W(s)	F(W(s))	W(s)	G(W(s))	
4	25%	1	33%	
5	75%	6	67%	
12	100%	8	100%	



Second Order Stochastic Dominance

- There is no *FOSD*, since the cumulative distribution functions "cross over" at payoffs of \$5 and \$8.
- Is there SOSD?

W _s	$f(W_s)$	$F(W_s)$	$g(W_s)$	$G(W_s)$	$\frac{G(W_s)}{F(W_s)}$
1	0.00%	0.00%	33.33%	33.33%	33.33%
4	25.00%	25.00%	0.00%	33.33%	8.33%
5	50.00%	75.00%	0.00%	33.33%	-41.67%
6	0.00%	75.00%	33.33%	66.67%	-8.33%
8	0.00%	75.00%	33.33%	100.00%	25.00%
12	25.00%	100.00%	0.00%	100.00%	0.00%
				$\frac{\sum(G(W_s)-F(W_s))}{F(W_s)}$	16.67%

Stochastic Dominance Class Problem

Stochastic Dominance Class Problem