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Abstract

The foundations of portfolio and capital market theory were set forth in seminal articles
published during the 1950’s and 1960’s by Markowitz (1952), Tobin (1958), Sharpe
(1964), Lintner (1965), and Mossin (1966). The purpose of this teaching note is to
provide a brief and succinct synthesis of the contributions made by these and other
articles in the development of portfolio and capital market theory.

1 Introduction

Portfolio theory involves the study of how risk averse investors can construct portfolios in
order to optimize the tradeoff between risk (as measured by variance) and expected return.
The theory emphasizes the necessity of analyzing risk in a portfolio context. After all, the
total risk of a portfolio depends not only on the unique risks of the securities which comprise
the portfolio, but also on the ways these risks interact with each other. Capital market
theory addresses the implications of portfolio theory for the pricing of risk in the capital
markets.

The statistical foundations for portfolio and capital market theory are based on the
Central Limit Theorem and the Law of Large Numbers. According to the Central Limit
Theorem, as individual probability distributions are aggregated, the average distribution
converges in probability toward the normal distribution (assuming that the means and vari-
ances of the individual probability distributions exist).1,2 Furthermore, if portfolio return
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1Technically, the “classical” version of the Central Limit Theorem requires that random variables be
independent and identically distributed random variables. However, Godwin and Zaremba (1961) note that
it is “well-known” that the Central Limit Theorem can be extended to cases in which the random variables
under consideration are not entirely independent, as is the case here.

2A famous example of where the mean and variance of the individual probability distributions do not
exist is the St. Petersburg Paradox (see Bernoulli (1954)). Bernoulli proposes the following gamble: “Peter
tosses a coin and continues to do so until it should land “heads” when it comes to the ground. He agrees
to give Paul one ducat if he gets “heads” on the very first throw, two ducats if he gets it on the second,
four if on the third, eight if on the fourth, and so on, so that with each additional throw the number of
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distributions are normally distributed, then this implies that variance is a “complete” risk
measure. Therefore, arbitrarily risk averse investors need only consider expected value and
variance in order to maximize expected utility.3

The Law of Large Numbers plays a particularly important role in capital market theory.
To see this, consider first the equation for portfolio variance. This parameter is obtained
by calculating a weighted average of all of the variances and covariances of the portfolio’s
component securities, as shown by equation (1):

σ2
p =

n∑
i=1

n∑
j=1

wiwjσij, (1)

where wi is the proportion of total investment in security i, σ2
i is the variance of security i,

and σi,j is the covariance between securities i and j. Now suppose that risks are identically
distributed; i.e., all securities have the same expected return, the same variance, and the same
covariances. By imposing these restrictive assumptions, the risk of an n security portfolio
simplifies from equation (1) to equation (2):

σ2
p =

σ2

n
+

n− 1

n
ρσ2, (2)

where ρ represents the correlation coefficient held in common by all pairwise combinations of
the n securities. Equation (2) provides us with the familiar characterization of portfolio risk

as consisting of two components: unsystematic risk (
σ2

n
) and systematic risk (

n− 1

n
ρσ2). In

the limit, as the number of risks becomes arbitrarily large (i.e., as n→ ∞), then σ2
p = ρσ2.

In other words, there is only covariance risk. Since investors are risk averse, they will fully
diversify their portfolios so that the only source of risk that remains (and is priced) is the
covariance risk that is inherent in the economy.

2 Portfolio Theory

2.1 Portfolio expected return and risk calculations

We calculate expected returns, standard deviations, and covariances on individual securities
as follows:

E(ri) =
n∑

s=1

psri,s, (3)

ducats he must pay is doubled.” The probability that it will take n coin tosses in order for heads to come
up is .5n, and the payoff after the nth coin toss is 2n−1 ducats; thus the expected value of this game is

EV =

∞∑
i=1

.5i2i−1 =

∞∑
i=1

.5 ⇒ ∞. The “paradox” is that the value of this gamble cannot possibly be its

expected monetary payoff, since as Bernoulli notes, “. . . no one would be willing to purchase it (this gamble)
at a moderately high price.

3The notion that variance is a “complete” risk measure when return distributions are normally distributed
was first shown by Ross (1978). Under the normal distribution, there are only two parameters, mean
(expected value) µ and variance σ2. Since the risk of a normally distributed random variable is fully
captured by variance, it follows (see equation (A.2) in the appendix) that expected utility for a normally
distributed risk depends only on the expected value and the variance of such a risk.
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σi =

√√√√ n∑
s=1

ps(ri,s − E(ri))2, and (4)

σi,j =
n∑

s=1

ps(ri,s − E(ri))(rj,s − E(rj)), (5)

where ps is the probability that state s will occur, ri,s represents the state-contingent return
on the i th security. Portfolio expected returns and standard deviations are calculated as
follows:

E(rp) =
n∑

i=1

wiE(ri), and (6)

σp =

√√√√ n∑
i=1

n∑
j=1

wiwjσi,j. (7)

2.2 Mean-variance efficiency

Our next task is to determine the subset of portfolios that satisfy the mean-variance efficiency
criterion. A portfolio is said to be mean-variance efficient if there is no other portfolio which,
for a given level of expected return, has lower risk (as measured by variance). Equivalently,
a mean-variance efficient portfolio has the property of having the highest expected return
for a given level of risk. Markowitz (1952) invented a mathematical programming technique
for finding the “efficient frontier” for which he won the Nobel Prize in 1990.4

The basic mathematical program proposed by Markowitz is as follows:

Minimize
{w1,w2,...,wn}

σ2
p =

n∑
i=1

n∑
j=1

wiwjσij, (8)

subject to E(rp) =
n∑

i=1

wiE(ri) = χ and
n∑

i=1

wi = 1. Equivalently, one may solve the following

mathematical program:

Maximize
{w1,w2,...,wn}

E(rp) =
n∑

i=1

wiE(ri), (9)

subject to σ2
p =

n∑
i=1

n∑
j=1

wiwjσij = δ and
n∑

i=1

wi = 1. Mathematical programming theory tells

us that the constrained optimization problems represented by equations (8) and (9) represent

4The efficient frontier corresponds to that subset of portfolios which satisfy the mean-variance efficiency
criterion cited here. When graphed in {E(rp), σp} space, this corresponds to the northwest perimeter of the
“feasible” set of portfolios, which consists of all possible portfolio combinations of risky securities, including
mean-variance efficient portfolios. Portfolios which lie below the efficient frontier are mean-variance ineffi-
cient, since they lack adequate expected return, given the level of risk. Similarly, portfolios that cluster to
the right of the efficient frontier are mean-variance inefficient because risk is too high for the level of expected
return.
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the “prime” and “dual” programs for the determination of mean-variance efficient portfolios,
and consequently the 1 x n vector of security weights (w1, w2, ..., wn) determined by either
method will be the same.

The solution procedure for equation (8) (equation (9)) involves finding the vector of
security weights (w1, w2, ..., wn) for a given value of χ (δ), and then iteratively solving for
other (w1, w2, ..., wn) vectors involving higher values for χ (δ). A special case is the minimum
variance portfolio, which is the end point of the efficient frontier. For simplicity (without
loss of generality), consider the determination of the minimum variance portfolio when there
are only 2 risky securities. For a two-asset portfolio, portfolio variance is written:

σ2
p = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2σ12. (10)

Since the security weights sum to 1; i.e., w1 + w2 = 1, by substituting 1− w1 in place of w2

on the right hand side of equation (10), the equation for portfolio variance σ2
p now has only

one unknown, which is w1:

σ2
p = w2

1σ
2
1 + (1− w1)

2σ2
2 + 2w1(1− w1)σ12

= w2
1(σ

2
1 + σ2

2) + 2w1(σ12 − σ2
2) + σ2

2 − 2w2
1σ12. (11)

Since we are interested in finding the least risky combination of securities 1 and 2 for which
the expected return constraint is non-binding, we differentiate equation (11) with respect to
w1, set the result equal to zero, and solve for w1. Therefore,

dσ2
p

dw1

= 2w1(σ
2
1 + σ2

2) + 2(σ12 − σ2
2)− 4w1σ12

= w1(σ
2
1 + σ2

2 − 2σ12) + σ12 − σ2
2 = 0 ⇒ w1 =

σ2
2 − σ12

σ2
1 + σ2

2 − 2σ12

. (12)

By weighting 2-asset portfolios according to the ratio given by equation (12), we are guar-
anteed a portfolio combination which minimizes total portfolio risk. We can determine the
mean-variance efficient set of 2-asset portfolios by starting with this portfolio and iteratively
solving the (n = 2 version of) equation (8) for higher values of χ (i.e., expected portfolio
return).5

2.3 Mean-variance efficiency when there are n securities

Given E(ri), σi, and σij, when there are n securities the investor must 1) determine which
combinations of the n securities are mean-variance efficient, and 2) select a portfolio from the
efficient set; this involves finding the portfolio that maximizes expected utility. Depending
on the investor’s degree of risk aversion, he or she may select a relatively safe or risky
portfolio. However, irrespective of the degree of risk aversion, so long as investors have the
same beliefs concerning risk and return for securities, then everyone selects from the same
set of mean-variance efficient portfolios.

5Similarly, in the general n security case, we first find the least risky combination of securities 1 through
n for which equation (8)’s expected return constraint is non-binding, and then iteratively solve equation (8)
for other (w1, w2, ..., wn) vectors that result in higher values for χ.
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2.4 Computation of the investor’s indifference curves

Next, we turn our attention to the issue of how to select an “optimal” portfolio. As explained
in the Appendix and shown in equation (A.5), the certainty-equivalent portfolio return (rcp)
for a risk averse investor is rcp = E(rp) − .5σ2

p/τ , where τ corresponds to the reciprocal of
the investor’s relative risk aversion measure. Since maximizing expected utility is equiva-
lent to maximizing the certainty-equivalent portfolio return, we obtain an indifference curve
equation by solving equation (A.5) for E(rp):

E(rp) = rcp + .5σ2
p/τ (13)

The investor’s expected utility is constant along any given indifference curve. In equation
(13), the higher the risk tolerance τ , the flatter the curve. In Figure 1, we show indifference
curves for two investors who have different degrees of risk tolerance. The more risk averse
investor is assumed to have τ = .25, and the less risk averse investor is assumed to have τ
= .50. We also vary rcp (shown as “rcp” in Figure 1) from 6% to 10%:

Figure 1. Indifference curves in E(rp), σp space.

2.5 Optimal portfolio selection

Now that we have defined the concepts of mean-variance efficient portfolios and indifference
curves, we can make some assessments concerning actual portfolio selection. In order to
maximize expected utility, the investor needs to find the point of tangency between her
highest indifference curve and the efficient frontier consisting of risky securities, as illustrated
by Figure 2:
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Figure 2. Optimal portfolio selection.

In Figure 2, point X corresponds to the optimal portfolio for the less risk averse (more risk
tolerant) investor whereas point Y is the optimal portfolio for the more risk averse (less risk
tolerant) investor.

2.6 Optimal portfolio selection when there is a riskless security

Tobin (1958) showed, among other things, that the portfolio selection problem can be sim-
plified if we incorporate a riskless security into our analysis. Suppose the investor limits
her portfolio selection to a combination of a riskless security with expected return rf and
zero variance, along with a risky security or risky asset portfolio with expected return E (rj)
and variance σ2

j . Returns on risky securities and portfolios are assumed to be normally dis-
tributed; thus, variance provides a complete measure of risk. Let α denote the proportion
of the portfolio invested in the risky security. Consequently, the expected return E (rp) and
variance σ2

p for such a portfolio are:6

E(rp) = αE(rj) + (1− α) rf , and (14)

6In equation (15), the result shown there (that portfolio variance is proportional to the variance of the
risky securities) follows directly from equation (10). Substituting α for w1 and 1 - α for w2, we obtain
σ2
p = α2σ2

j + (1− α)2σ2
f + 2α(1− α)σjf . Since σ2

f = σjf = 0, it follows that σ2
p = α2σ2

j .
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σ2
p = α2σ2

j . (15)

In this case, it is possible to obtain a simple expression for the risk-return trade-off. From
equations (14) and (15), E(rp) = rf + (E(rj)− rf )α and σp = ασj. Thus, α = σp/σj, and
by replacing α in equation 14) with the ratio σp/σj, we obtain (equation (16)):

E(rp) = rf +
E(rj)− rf

σj

σp. (16)

The investor’s task is to select a value for α such that expected utility is maximized. Given
equation (14), our maximand is determined by substituting the right hand sides of equations
(14) and (15) into equation (A.5):

rcp = αE(rj) + (1− α)rf − (.5/τ)α2σ2
j . (17)

Differentiating equation (17) with respect to the investor’s choice variable, α, and setting
the resulting expression equal to zero yields the first order condition:

E(rj)− rf − (1/τ)ασ2
j = 0. (18)

The second order condition for a maximum, d2E(U(rp))/dα
2 = −(1/τ)σ2

j < 0, is satisfied if
τ > 0, as assumed.

Rearranging the first order condition given by equation (18) and solving for α results in
equation (19):

α =
(E(rj)− rf )

σ2
j

τ. (19)

In equation (19), it is apparent that the proportion which will be optimally allocated to the
risky security depends on two factors: 1) the excess return on the risky security per unit of
variance, and 2) the investor’s risk tolerance. The greater either of these are, the greater
will be the investor’s exposure toward the risky security.

Note that equation (19) may be rewritten as follows:

α =
(E(rj)− rf )

σj

τ

σj

. (20)

In equation (20), the first ratio is the well-known “Sharpe Ratio”, which is a very popular
“reward-to-risk” metric that is commonly used in portfolio performance measurement. By
inspection, it is apparent from equation (20) that α is positively related to the Sharpe Ratio
and the investor’s degree of risk tolerance, and negatively related to volatility. In other
words, if the risky security is expected to “outperform” (underperform) the riskless asset
on a risk-adjusted basis, then the risk averse investor optimally allocates a higher (lower)
proportion of her portfolio to the risky security, other things equal. On the other hand, as
the Sharpe Ratio declines, the optimal allocation to the risky security also declines.

Suppose that E (rj) = 12%, rf = 4%, and σj = 20%. Table 1 provides a numerical
example of the effect of changes in risk tolerance on α:
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Risk tolerance (τ) α 1-α E (rp) σp

1.0 200% -100% 20% 40%
0.8 160% -60% 17% 32%
0.6 120% -20% 14% 24%
0.4 80% 20% 10% 16%
0.2 40% 60% 7% 8%
0.0 0% 100% 4% 0%

Table 1. Optimal security allocations for different risk tolerances.

3 Capital Market Theory

Portfolio theory is normative in the sense that it produces various decision rules, or heuristics,
concerning how a risk averse investor can select portfolios which maximize her expected
utility. Next, we consider the implications of this kind of portfolio behavior for the pricing
of risk in the capital markets.

Rather than limit one’s selection to the efficient set of risky portfolios, we allow investors
to combine investment in a mean-variance efficient portfolio along with borrowing or lend-
ing at the riskless rate of interest. Thus the portfolio selection problem initially involves
determining which risky mean-variance efficient portfolio to select, and it subsequently in-
volves determining the level of exposure (α) which one has to this risky portfolio. Figure 3
illustrates how two different investors with different optimal values for α make such a choice.

Figure 3. Optimal portfolio selection in equilibrium for two different investors.

From equation (20), investors will determine which of the available mean-variance efficient
portfolios maximizes the Sharpe Ratio. Since investors have homogenous beliefs and markets
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must clear (i.e., supply and demand of securities must be equal), investors will be unanimous
in their choice of the optimal risky mean-variance efficient portfolio. The optimal portfolio
for all investors will be a hypothetical “market” portfolio which is essentially a value-weighted
index fund consisting of all securities in proportion to their market values. This will be the
optimal portfolio for all investors because it provides investors with the best possible Sharpe
Ratio. Although investors select from the same two securities (the riskless security and the
market portfolio), they differentiate themselves according to their preferred level of exposure
to the market portfolio (α).

In the case illustrated by Figure 3, one investor solves equation (20) using the parameters
for the riskless security and the market portfolio, and finds that her optimal α is 50%. This
means that she will select a “lending” portfolio in which 1-α = 50% of her money is invested
in the riskless security, and α = 50% is invested in the market portfolio. The other investor
finds that her optimal α is 200%. This means that she will select a “borrowing” portfolio in
which she doubles her money in the market portfolio by establishing a margin account equal
to her net equity investment; i.e., 200% of her equity is invested, and half of the financing
comes from short selling the riskless security.

The line in Figure 3 is commonly referred to as the Capital Market Line. This is the
efficient frontier in a world in which investors can borrow and lend money at the riskless rate
of interest. The equation of the Capital Market Line is:

E(rp) = rf +
E(rj)− rf

σj

σM . (21)

The expected rate of return on a mean-variance efficient portfolio therefore comprises two
separate components: 1) the return on a riskless security, like U.S. Treasury bills that com-
pensates investors for the time value of money, and 2) a risk premium which compensates
investors for bearing risk.

3.1 All risk-return tradeoffs are equal

An important implication of the Capital Market Line is that in equilibrium, all risk-return
tradeoffs must be equal. Assume that the market portfolio consists of all (N ) securities in the
economy, and security j accounts for wj percent of the market portfolio. Then the equations
for the expected return (E(rM)) and the variance (V ar(rM)) are given by equations (22)
and (23):

E(rM) =
N∑
j=1

wj(E(rj)− rf ) + rf , and (22)

V ar(rM) =
N∑
i=1

N∑
j=1

wiwjCov(ri, rj). (23)

Suppose we marginally increase wj in our portfolio. This will cause expected return to change
by E(rj)−rf , and variance to change by Cov(rj, rM).7 Thus, the return/risk trade-off related

7From equation (22), note that the impact of a “marginal” increase in wj on E(rM ) is calculated by
differentiating E(rM ) with respect to wj ; thus, ∂E(rM )/∂wj = E(rj)− rf . From equation (23), the impact
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to a marginal increase in wj corresponds to (E(rj)−rf )/Cov(rj, rM). In equilibrium, this risk-
return tradeoff must be the same for all securities; i.e., (E(ri)− rf )/Cov(ri, rM) = (E(rj)−
rf )/Cov(rj, rM) for all i and j. If (E(ri) − rf )/Cov(ri, rM) ̸= (E(rj) − rf )/Cov(rj, rM),
then there is an arbitrage opportunity. Suppose (E(ri) − rf )/Cov(ri, rM) > (E(rj) −
rf )/Cov(rj, rM). Then security i offers a better risk-return tradeoff than security j. In-
vestors will recognize this and respond by purchasing security i and selling security j.
Consequently, in equilibrium, the risk-return tradeoff must be equal for all securities; i.e.,
(E(ri)− rf )/Cov(ri, rM) = (E(rj)− rf )/Cov(rj, rM) for all i and j.

3.2 The Capital Asset Pricing Model (CAPM)

If the risk-return tradeoff is the same for all i and j, then the risk-return tradeoff for the
market portfolio must also be the same as for i and j; i.e.,

E(ri)− rf
Cov(ri, rM)

=
E(rj)− rf
Cov(rj, rM)

=
E(rM)− rf
V ar(rM)

(24)

Next, we solve equation (24) for the expected returns on securities i and j, relative to the
expected return on the market:

E(ri) = rf +
Cov(ri, rM)

V ar(rM)
(E(rM)− rf ) = rf + βi(E(rM)− rf ), and (25)

E(rj) = rf +
Cov(rj, rM)

V ar(rM)
(E(rM)− rf ) = rf + βj(E(rM)− rf ), (26)

where βi =
Cov (ri, rM)

V ar (rM)
and βj =

Cov (rj, rM)

V ar (rM)
. Equations (25) and (26) represent Capital

Asset Pricing Model (CAPM) equations for securities i and j; Figure 4 depicts the security
market line (SML), which graphically represents the CAPM:

Figure 4. Capital Asset Pricing Model (CAPM)

of a “marginal” increase in wj on V ar(rM ) is calculated by differentiating V ar(rM )) with respect to wj ;

thus, ∂V ar(rM )/∂wj =
N∑
i=1

wiCov(rj , ri) = Cov(rj , rM ).

10



According to equations (25) and (26), the equilibrium expected rates of return on securities
i and j consist of two separate components: 1) the return on a riskless security, and 2) a
risk premium which is proportional to a standardized measure of each security’s covariance
or “systematic” risk, which is measured by its beta. As noted earlier, this theory fits well
with the Law of Large Numbers; i.e., an individual security’s contribution to portfolio risk
is its covariance risk, not its individual variance risk. Therefore, risk averse investors only
require compensation for covariance risk.

Suppose that for security i:

E(ri) < rf + βi(E(rM)− rf ). (27)

Consider the following definition of expected return:

E(ri) =
E(P 1

i +D1
i )− P 0

i

P 0
i

, (28)

where P 1
i is next period’s expected price for security i, D1

i is security i’s expected dividend,
and P 0

i is its current price. Since, as indicated by equation (27), E(ri) is too low given the
level of risk, there will be excess supply of security i. Thus P 0

i will be bid down and E(ri)
will increase until markets clear and the security market line equation (equation 25) holds.
On the other hand, if E(ri) > rf + βi(E(rM)− rf ), then this implies that E(ri) is too high
given the level of risk, which in turn implies that security i is undervalued. Thus P 0

i will
be bid up and E(ri) will decrease until markets clear and the security market line equation
holds once again. Figure 5 provides a graphical illustration of this equilibrium process for
two (initially mispriced) securities, each of which have the same beta:

Figure 5. The equilibrium process.
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Appendix
Expected Utility, Mean-Variance Theory, and

Arrow-Pratt Risk Aversion Measures

Expected Utility & Mean-Variance Theory

The logical connection between expected utility and the mean-variance model is made ap-
parent by considering a second-order Taylor series of an arbitrary risk averse utility function
U(W ) in which U(W ) is approximated for values of W which deviate from the expected
value of wealth E(W ):

U(W ) ∼= U(E(W )) + U ′(W − E(W )) + (1/2)U ′′(W − E(W ))2. (A.1)

Next, we find expected utility by calculating the expected value of equation (A.1):

E(U(W )) ∼= U(E(W )) + U ′E(W − E(W )) + (1/2)U ′′E(W − E(W ))2

∼= U(E(W )) + (1/2)U ′′E(W − E(W ))2 ∼= U(E(W )) + (1/2)U ′′σ2
W . (A.2)

Since risk aversion implies that marginal utility is positive (U ′ > 0) and diminishing in
wealth (U ′′ < 0), it follows from equation (A.2) that E(U(W )) is positively related to E(W )
and negatively related to σ2

W . In other words, the mean-variance model obtains as a special
case of the expected utility model, where higher order moments for W such as skewness and
kurtosis are inconsequential.8

Arrow-Pratt Risk Aversion Measures

Next, we turn our attention to the Arrow (1965) and Pratt (1964) risk aversion measures.
Within the expected utility framework, the expected utility of wealth is equal to the utility
of the certainty-equivalent of wealth; i.e., E(U(W )) = U(WCE) = U [(E(W ) − λ(E(W )],
where WCE corresponds to the certainty-equivalent of wealth and λ corresponds to the risk
premium. The utility of the certainty-equivalent of wealth can be linearly approximated by
a first order Taylor series expansion centered at the expected value of wealth; i.e.,

U [E (W )− λ (E (W )] ∼= U (E (W )) − λ (E (W ))U ′. (A.3)

Next, we set the expected utility of wealth (as shown by equation (A.2)) equal to the utility
of the certainty-equivalent of wealth (as shown by equation (A.3)) and solve for λ(E (W )):

U(E(W )) + .5U ′′σ2
W = U(E(W ))− λ(E(W ))U ′

⇒ λ(E(W )) = −.5σ2
W (U ′′/U ′)|W=E(W ) = .5σ2

WRA(E(W )), (A.4)

where RA(W ) = −U ′′/U ′ represents the Arrow-Pratt measure of absolute risk aversion and
RA(E(W )) corresponds to the evaluation of this measure at the expected value of wealth.
Absolute risk aversion determines the dollar amount of wealth that an investor is willing

8In the case of the normal distribution, this is certainly a valid assumption.
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to put at risk, whereas relative risk aversion RR = WRA(W ) determines the proportion of
wealth that an investor is willing to put at risk.9

Risk tolerance (τ) corresponds to the reciprocal of relative risk aversion; i.e., τ = 1/RR.
Since the certainty-equivalent of wealth WCE = (E(W ) − λ(E(W )), it follows that the
certainty-equivalent of the percentage change in wealth (rcp), is equal to the difference between
the expected return on the investor’s portfolio (E(rp)) less the risk premium (expressed in
percentage terms) for this portfolio (.5σ2

pRR = .5σ2
p/τ). Therefore, the certainty-equivalent

return for portfolio p is written as:

rcp = E(rp)− .5σ2
p/τ. (A.5)

9Conveniently, most of the utility functions considered in Finance 4335 are characterized by decreasing
absolute risk aversion (which implies that investors become less risk averse in dollar terms with increases in
wealth) and constant relative risk aversion (which implies that investors prefer to put a fixed proportion of
wealth at risk).
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