Baylor University Hankamer School of Business Department of Finance, Insurance \& Real Estate

Risk Management

Name: \qquad
Dr. Garven
Problem Set 3
Show your work and write as legibly as possible. Good luck!
Problem 1 (40 points). Suppose Fortunate, Grimy and Otto are identical in all respects, except utility. Fortunate has $U=W^{1.5}$, Grimy has $U=1+2 W$, and Otto has $U=\ln W$. Fortunate, Grimy and Otto each have initial wealth of $\$ 140$ and have a 25 percent probability of losing $\$ 100$.
A. Calculate the certainty equivalents of wealth $\left(W_{C E}\right)$ for Fortunate, Grimy and Otto.

To answer this question, we must compute the expected utilities for Fortunate, Grimy and Otto. The state contingent wealths are:

State	p_{s}	L_{s}	W_{s}
Loss	0.25	200.00	80.00
No Loss	0.75	0.00	280.00

Therefore,

$$
\begin{gathered}
E\left(U_{\text {Fortunate }}\right)=.25 \times 80^{1.5}+.75 \times 280^{1.5}=3,692.86 \\
E\left(U_{\text {Grimy }}\right)=.25 \times(1+2(80))+.75 \times(1+2(280))=461 ; \text { and } \\
E\left(U_{\text {Otto }}\right)=.25 \times(\ln 80)+.75 \times(\ln 280)=5.32 ;
\end{gathered}
$$

$W_{C E}$ is computed by setting $E(U(W))=U\left(W_{C E}\right)$ and solving for $W_{C E}$:

$$
\begin{gathered}
W_{C E}^{\text {Fortunate }}=3,692.86^{2 / 3}=\$ 238.91 ; \\
W_{C E}^{\text {Grimy }}=(461-1) / 2=\$ 230 ; \text { and } \\
W_{C E}^{\text {Otto }}=e^{5.32}=\$ 204.71
\end{gathered}
$$

B. Who is willing to pay the most to insure this risk? Explain why.

Otto is willing to pay the most to insure this risk; specifically, he is willing to pay up to $280-204.71=\$ 75.29$, which is $\$ 25.29$ greater than the actuarially fair value of $\$ 50$. Since Grimy is risk neutral, he is not willing to pay any more than the actuarially fair value of $\$ 50$. Finally, since Fortunate is a risk lover, he is only willing to insure if the price is less than actuarially fair value. Specifically, he is not willing to pay any more than $\$ 41.09$ to insure this risk.

Problem 2. Suppose you wish to insure an asset valued at $\$ 1,800$. Only two states of the world can occur in the future, Windstorm and No Windstorm, with probabilities .20 and .80 respectively. The asset is completely destroyed In the Windstorm event, Your initial wealth (including this asset) is $\$ 2,000$ and your utility $U(W)=\ln W$.
A. Suppose an insurer offers to fully insure your fire risk for a price of $\$ 360$. Should you purchase this insurance policy? Why or why not?

The fact that it is optimal to purchase this policy can be numerically confirmed by calculating the expected utility of being fully insured and comparing this with the expected utility of being self-insured. By purchasing insurance for $\$ 360$, this means that I have a choice between certain wealth of $\$ 1,640$ (full insurance case) and a risky lottery with an expected value of $\$ 1,640$ (self-insurance case):

Full insurance: $E(U(W))=.20 \ln 1,640+.80 \ln 1,640=\ln 1,640=7.4025$, and Self-insurance: $E(U(W))=.20 \ln 200+.80 \ln 2,000=7.1404$.

This simple numerical example showcases the famous Bernoulli principle, which states that risk averse decision-makers will find it optimal to purchase full coverage if insurance is actuarially fair.
B. If the price for full coverage is $\$ 500$, should you fully insure? Why or why not?

By purchasing insurance for $\$ 500$, this means that I have a choice between certain wealth of $\$ 1,500$ (full insurance case) and a lottery with an expected value of $\$ 1,640$ (selfinsurance case):

Full insurance: $E(U(W))=.20 \ln 1,500+.80 \ln 1,500=\ln 1,500=7.3132$.

Since full insurance has higher expected utility than self-insurance, I prefer to fully insure.
C. What is the maximum price you are willing to pay to fully insure this risk? Explain how you determined the answer to this question.

The maximum price equals the actuarially fair price plus the risk premium, which is calculated as the difference between expected wealth and the certainty equivalent of wealth under the self-insurance option. Since 1) my utility is $U(W)=\ln W, 2$) expected utility of self-insurance is $E(U(W))=7.1404,3)$ certainty equivalent of wealth is $W_{C E}=$ $\left.e^{7.1404}=\$ 1,261.91,4\right)$ my risk premium is $E(W)-W_{C E}=\$ 1,640-\$ 1,261.91=\$ 378.09$, it follows that the maximum price I am willing to pay to fully insure this risk is $\$ 360+$ $\$ 378.09=\$ 738.09$.

