Baylor University Hankamer School of Business Department of Finance, Insurance \& Real Estate

Risk Management
Name: \qquad
Dr. Garven
Problem Set 6
Show your work and write as legibly as possible. Good luck!

Problem 1

The following table lists the state-contingent returns on Security A $\left(r_{A, s}\right)$ and Security B $\left(r_{B, s}\right)$:

State of Economy	p_{s}	$r_{A, s}$	$r_{B, s}$
Bust	50%	-0.20	+0.25
Boom	50%	+0.40	-0.05

A. What are the expected returns for Security A and Security B?

SOLUTION: $E\left(r_{A}\right)=\sum_{s=1}^{n} p_{s} r_{A, s}=.5(-.2)+.5(.4)=.10$; and
$E\left(r_{B}\right)=\sum_{s=1}^{n} p_{s} r_{B, s}=.5(.25)+.5(-.05)=.10$.
B. What are the standard deviations of the returns for Security A and Security B?

SOLUTION:
$\sigma_{r_{A}}^{2}=\sum_{s=1}^{n} p_{s}\left(r_{A, s}-E\left(r_{\mathrm{A}}\right)\right)^{2}=.5(-.2-.10)^{2}+.5(.4-.10)^{2}=.09$; therefore $\sigma_{r_{A}}=.30$; and
$\sigma_{r_{B}}^{2}=\sum_{s=1}^{n} p_{s}\left(r_{B, s}-E\left(r_{B}\right)\right)^{2}=.5(.25-.10)^{2}+.5(-.05-.10)^{2}=.02 ;$ therefore $\sigma_{r_{B}}=.150$.
C. Find the expected return and standard deviation for the least possible risky combination of Security A and Security B. What is the composition of this portfolio (i.e., find the security weights w_{A} and $\left.w_{B}\right)$?
SOLUTION:
$\sigma_{A B}=\sum_{s=1}^{n} p_{s}\left(r_{A s}-E\left(r_{A}\right)\right)\left(r_{B s}-E\left(r_{B}\right)\right)=.5(-.2-.10)(.25-.10)+.5(.40-.10)(-.05-.10)$ $=-.045$.
Therefore, $w_{A}=\frac{\sigma_{B}^{2}-\sigma_{A B}}{\sigma_{A}^{2}+\sigma_{B}^{2}-2 \sigma_{A B}}=\frac{.0225+.045}{.09+.0225+.09}=1 / 3$. Consequently, $w_{B}=1-$ $w_{A}=2 / 3$, and $r_{m v p}=.10$. Furthermore, since $\rho_{A B}=-.045 /(.30)(.15)=-1$, the standard deviation of the least possible risky combination of security A and security B is zero.
D. Suppose your initial wealth is $\$ 1,000$ and that you can borrow or lend up to $\$ 1,000$ at the riskless rate of interest of 3% during the next year. Given this information, describe the most profitable riskless trading strategy which can be implemented, and calculate the profit from implementing this strategy.

SOLUTION: The most obvious riskless investment strategy would involve investing your initial wealth of $\$ 1,000$ in a riskless bond that yields 3%. Furthermore, since you can borrow up to $\$ 1,000$, you could also lever this strategy by investing $\$ 2,000$ at 3% and then paying back the principal plus interest on the $\$ 1,000$ loan. However, since the the opportunity cost of capital for a riskless investment is the riskless rate of interest, these strategies do not increase your net worth; i.e., their net present values are $\$ 0$.

It is possible to increase your net worth without taking any risk by investing your initial wealth of $\$ 1,000$ plus an additional $\$ 1,000$ of borrowed money in the minimum variance portfolio; the value of such an investment after 1 year is $\$ 2,000 e^{.10}-1,000 e^{.03}=\$ 2,210.34$ $-\$ 1,072.51=\$ 1,137.83$, which implies an expected return totaling 13.78%. The net present value of this riskless arbitrage strategy is $N P V=\$ 1,137.83 e^{-.07}-\$ 1,000=$ $\$ 60.91$.

Problem 2

Suppose you have two stocks in your portfolio, Maxima and Minima. The expected return of Maxima is 12% and the expected return of Minima is 6%. The standard deviation of Maxima is 20% and the standard deviation of Minima is 12%. The correlation between the two securities is zero. Suppose the riskless asset has an expected return of 3%.
A. What is the mean and standard deviation of the minimum variance portfolio combination of Maxima and Minima?
$\underline{\text { SOLUTION: }}$ The ratio given by $w_{\text {Minima }}=\frac{\sigma_{\text {Maxima }}^{2}-\sigma_{\text {Maxima,_Minima }}}{\sigma_{\text {Minima }}^{2}+\sigma_{\text {Maxima }}^{2}-2 \sigma_{\text {Maxima }, \text { Minima }}}$ provides a value for $w_{\text {Minima }}$ which minimizes portfolio variance; therefore, $\mathrm{w}_{\text {Minima }}=$ $\frac{.04}{.0144+.04}=.735, E\left(r_{m v p}\right)=.265 \times E\left(r_{\text {Maxima }}\right)+.735 \times E\left(r_{\text {Minima }}\right)=.265(12 \%)+$ $.735(6 \%)=7.59 \%$, and $\sigma_{m v p}=\sqrt{.265^{2} \times .04+.735^{2} \times .0144}=10.29 \%$.
B. Which has the highest Sharpe ratio, Maxima, Minima or the minimum variance portfolio combination of Maxima and Minima?

SOLUTION: The Sharpe ratio is computed as the excess return on the security divided by its standard deviation. Therefore,

Sharpe Ratio $_{\text {Maxima }}=(.12-.03) / .20=45 \%$;
Sharpe Ratio $_{\text {Minima }}=(.06-.03) / .12=25 \%$; and
Sharpe Ratio $_{M V P}=(.0759-.03) / .1029=44.59 \%$.

Therefore, Maxima has the highest Sharpe ratio at 45%, the minimum variance portfolio (MVP) combination of Maxima and Minima has the second highest Sharpe ratio (44. 90%), and the Sharpe ratio for Minima is significantly lower (only 25%).
C. Suppose the correlation between Maxima and Minima is -1. If this were the case, there would be an arbitrage opportunity, since a combination of Maxima and Minima exists that is riskless and yields a higher expected return than the riskless asset. Describe the characteristics of a portfolio strategy that would enable you to generate positive profits without having to bear any risk or investing any of your own money. Assume that there are no restrictions on short sales or margin requirements.

SOLUTION:

$$
w_{\text {Minima }}=\frac{.04-(-1)(.2)(.12)}{.0144+.04-(-2)(.2)(.12)}=.064 / .1024=.625
$$

The expected return for this portfolio is $E\left(r_{\text {mvp }}\right)=.375 \times E\left(r_{\text {Maxima }}\right)+.625 \times E\left(r_{\text {Minima }}\right)=$ $.375(12 \%)+.625(6 \%)=8.25 \%$, and $\sigma_{m v p}=0$ because $\rho_{\text {Minima,Maxima }}=-1$. We can generate positive profits without having to bear any risk or put up any of our own money by simply choosing the following set of weights: $w_{\text {Minima }}=.375, w_{\text {Maxima }}=.625$, and $w_{r_{f}}=-1$. In other words, we go long 100 percent in the riskless combination of Maxima and Minima, and 100 percent short in the riskless asset; i.e., we fund our investment in the combination of Maxima and Minima by borrowing an equivalent sum of money at the riskless rate of interest.
D. Now suppose the expected return to the market portfolio is 8% and the standard deviation of the market portfolio is 15%. Assuming that the CAPM holds, what are the betas for Maxima and Minima?

SOLUTION: According to the CAPM, $E\left(r_{\text {Maxima }}\right)=r_{f}+\left[E\left(r_{m}\right)-r_{f}\right] \beta_{\text {Maxima }}$; therefore,

$$
\beta_{\text {Maxima }}=\left(\frac{\left[E\left(r_{\text {Maxima }}\right)-r_{f}\right]}{\left[E\left(r_{m}\right)-r_{f}\right]}\right) \$=(.12-.03) /(.08-.03)=1.8
$$

Similarly,

$$
\beta_{\text {Minima }}=\left(\frac{\left[E\left(r_{\text {Minima }}\right)-r_{f}\right]}{\left[E\left(r_{m}\right)-r_{f}\right]}\right) \$=(.06-.03) /(.08-.03)=.6 .
$$

