Baylor University Hankamer School of Business Department of Finance, Insurance \& Real Estate

Risk Management

Name: SOLUTIONS
Dr. Garven
Problem Set 7
Show your work and write as legibly as possible. Good luck!
Problem 1 (50 points)
Suppose the current value of a (non-dividend-paying) stock is $\$ 10,000$, and the annual continuously compounded riskless rate of interest is 4%. Based on the example provided on pp. 9-14 from the "Derivatives Theory, Part 1" lecture note, solve parts A and B below.
A. (25 points)What is the "arbitrage-free" price for a forward contract on this stock which matures 1 year from today?

SOLUTION: $F=S e^{r T}=\$ 10,000 e^{.04}=\$ 10,408.11$
B. (25 points) Suppose the forward price is $\$ 10,400$. Describe a profitable zero risk, zero net investment trading strategy involving the forward contract and its replicating portfolio. If you implement such a strategy, how much profit will you earn?

SOLUTION: Since the forward price of $\$ 10,400$ is below its "arbitrage-free" price by $\$ 8.11$, it is undervalued. In order to take advantage of this mispricing in a way that involves zero risk and zero net investment, one should buy a 1-year forward contract for $\$ 10,400$, sell the stock for $\$ 10,000$, and lend $\$ 10,000$ at the riskless rate. The following table succinctly summarizes this trading strategy:

Transaction	Payoff now	Payoff @ T
Buy Forward	$\$ 0$	$S_{T}-\$ 10,400$
Sell Stock	$\$ 10,000$	$-S_{T}$
Lend	$(\$ 10,000)$	$\$ 10,000 e^{.04}=\$ 10,408.11$
Arbitrage Profit	$\$ \mathbf{0}$	$\$ \mathbf{8 . 1 1}$

Problem 2 (50 points)
The price of a share of Zoom stock is currently $\$ 250$. It is known that at the end of 1 year, the Zoom share price will be either $\$ 312.50$ or $\$ 200$. The riskless interest rate is 2% per year.
A. (10 points) Calculate the price of a 1-year European call option on Zoom stock with an exercise price of $\$ 250$ by applying the replicating portfolio approach.

SOLUTION: According to the replicating portfolio approach:

$$
\begin{aligned}
C_{u} & =\operatorname{Max}\left(0, S_{u}-K\right)=62.50 \\
C_{d} & =\operatorname{Max}\left(0, S_{d}-K\right)=0 \\
V_{R P} & =\Delta S+B \\
\Delta S & =\frac{C_{u}-C_{d}}{S(u-d)} S=\frac{62.50}{250(.45)} 250=.5556(250)=138.89 \\
B & =\frac{u C_{d}-d C_{u}}{e^{r \delta t}(u-d)}=\frac{1.25(0)-.8(62.50)}{e^{.02(1)}(.45)}=-108.91 \\
\therefore C=V_{R P} & =\Delta S+B=\$ 138.89-\$ 108.91=\$ 29.98 .
\end{aligned}
$$

B. (10 points) Calculate the price of a 1-year European call option on Zoom stock with an exercise price of $\$ 250$ by applying the risk neutral valuation approach.
 .4893 . Since the stock is worth $\$ 250(1.25)=\$ 312.50$ at the u node and $\$ 250(.8)=\$ 200$ at the d node, this means that the call is only in the money at the u node; specifically, it is worth $\$ 62.50$ at that node. Therefore, the price of a one-year call option is

$$
C=e^{-r \delta t}\left[q C_{u}+(1-q) C_{d}\right]=e^{-.02}[.4893(62.50)]=\$ 29.89
$$

C. (10 points) Calculate the price of a 1-year European put option on Zoom stock with an exercise price of $\$ 250$.
SOLUTION: According to the put-call parity equation, $C+K e^{-r \delta t}=P+S$; therefore, $\overline{P=C+K} e^{-r \delta t}-S \Rightarrow P=29.98+250 e^{-.02(1)}-250=\$ 25.03$.
D. (20 points) Next, add another 1-year timestep; i.e., it is known that at the end of 2 years, the Zoom share price will be $\$ 390.63$, $\$ 250$, or $\$ 160$. Calculate the price of a 2 year European call option on Zoom stock with an exercise price of $\$ 250$. Also calculate the price of a 2-year European put option on Zoom stock with an exercise price of $\$ 250$. SOLUTION: Note that the call option is only in the money at the $u u$ node, where it is worth $\$ 140.63$. It is worthless at the $u d$ and $d d$ nodes. Applying risk neutral valuation, the price of a two-year call option is

$$
\begin{aligned}
C & =e^{-2 r \delta t}\left[q^{2} C_{u u}+2 q(1-q) C_{u d}+(1-q)^{2} C_{d d}\right] \\
& =e^{-.04}\left[.4893^{2}(140.63)\right]=\$ 32.35
\end{aligned}
$$

Regarding the (otherwise identical) 2-year put option, put-call parity indicates that the put is worth $\$ 22.55$:

$$
P=C+K e^{-2 r \delta t}-S=32.35+\$ 250 e^{-.04}-\$ 250=\$ 22.55 .
$$

