Baylor University Hankamer School of Business
 Department of Finance, Insurance \& Real Estate

Risk Management

Name: \qquad
Dr. Garven
Problem Set 8
Show your work and write as legibly as possible. Good luck!
Problem 1.
Suppose you are interested in determining arbitrage-free prices for a European call option and an (otherwise identical) European put option. The underlying stock does not pay dividends, and its current price is $S=\$ 18$. For both options, the exercise price $K=\$ 20$, $u=e^{\sigma \sqrt{\delta t}}, d=e^{-\sigma \sqrt{\delta t}}$, and the length of each timestep is $\delta t=1 / 4$. Furthermore, the riskless rate of interest $r=4 \%$ per year, the underlying stock's volatility $\sigma=25 \%$ per year, and both options expire 1 year from today.
A. (30 points) What is the arbitrage-free price for the call option?

SOLUTION: Rather than calculate all possible node-specific prices for the underlying stock, it is simpler to determine the minimum number of up moves required in order for the call option to expire in the money. Let $a=$ the smallest integer value $>$ $\ln \left(K / S d^{n}\right) / \ln (u / d)$. Since $\sigma=25 \%$ and $\delta t=1 / 4, u=e^{\sigma \sqrt{\delta t}}=e^{.25 \sqrt{1 / 4}}=1.1331$ and $d=1 / u=.8825$, then $\ln \left(20 / 18\left(.8825^{4}\right)\right) / \ln (1.1331 / .8825)=2.421$ and $a=3$. This means that the call option will be in-the-money at nodes uuud and uuuu, and from Pascal's Triangle, we know that there are 4 unique path sequences leading to the uuud node and 1 unique path sequence leading to the uuuu node.

The node uuud stock price is $u^{3} d S=1.1331^{3}(.8825)(18)=\$ 23.11$ and the node $u u u u$ stock price is $u^{4} S=1.1331^{4}(18)=\$ 29.681$, so the call option payoffs at these nodes are $c_{\text {uuud }}=\$ 3.11$ and $c_{u u u u}=\$ 9.68$ respectively. Since the risk neutral probability of an up move is $q=\frac{e^{r \delta t}-d}{u-d}=\frac{e^{.04 / 4}-.8825}{1.1331-.8825}=.5089$, it follows that

$$
\begin{aligned}
c & =e^{-. r 4 \partial t}\left[4 q^{3}(1-q) c_{u u u d}+q^{4} c_{\text {uuuu }}\right] \\
& =e^{-.04}\left[4\left(.5089^{3}\right)(.4911)(\$ 3.11)+\left(.5089^{4}\right)(\$ 9.68)\right]=\$ 1.40
\end{aligned}
$$

B. (20 points) What is the arbitrage-free price for the put option?

SOLUTION: Applying the put-call parity equation, we find that $c+K e^{-r n \delta t}=p+S \Rightarrow$ $p=\$ 1.40+\$ 20 e^{-.04}-18=\$ 2.61$.

Problem 2. For this problem, the following set of definitions applies:
$C=$ current (European) call option price;
$P=$ current (European) put option price;
$S=$ current price of a non-dividend paying stock (underlying asset for both options);
$K=$ exercise price (common to both options);
$r=$ annualized riskless rate of interest;
$T=$ time (in terms of number of years) to expiration; and
$\sigma=$ annualized standard deviation of underlying asset's rate of return.
For each of the following scenarios (A through D), calculate the missing variable(s):

Scenario	\boldsymbol{C}	\boldsymbol{P}	\boldsymbol{S}	\boldsymbol{K}	\boldsymbol{r}	σ	\boldsymbol{T}
A	$\boldsymbol{?}$	$\boldsymbol{?}$	$\$ 18$	$\$ 20$	4%	25%	1.00
B	$\$ 2.96$	$\$ 1.98$	$\boldsymbol{?}$	$\$ 25$	4%	25%	1.00
C	$\$ 5.60$	$\$ 1.42$	$\$ 33$	$\boldsymbol{?}$	4%	25%	1.00
D	$\$ 2.38$	$\$ 3.60$	$\$ 18$	$\$ 20$	4%	$\boldsymbol{?}$	1.00

SOLUTIONS:

A. SCENARIO A SOLUTION (20 points): Here, we must find the arbitrage-free prices for the call and put options. We do this by applying the Black-Scholes-Merton option pricing formula for pricing the call option. Once we have determined the arbitragefree price for the call option, we can determine the corresponding arbitrage-free put option price by applying the put-call parity equation.

Since $c=S N\left(d_{1}\right)-K e^{-r T} N\left(d_{2}\right)$, the key to calculating the value of the call option is in first calculating d_{1} and d_{2}, then $N\left(d_{1}\right)$ and $N\left(d_{2}\right)$, and then combining these probability measures with the current value of the underlying stock and the present value of the exercise price:

$$
d_{1}=\frac{\ln (S / K)+\left(r+.5 \sigma^{2}\right) T}{\sigma \sqrt{T}}=\frac{\ln (18 / 20)+(.04+.5(.25)) 1}{.25 \sqrt{1}}=-0.1364 .
$$

Therefore, $d_{2}=d_{1}-\sigma \sqrt{T}=-0.1364-.25 \sqrt{1}=-0.3864$. Consequently, $N\left(d_{1}\right)=44.57 \%$, $N\left(d_{2}\right)=34.96 \%$, and the value of the call option is:

$$
c=S N\left(d_{1}\right)-e^{-r T} K N\left(d_{2}\right)=18(44.57 \%)-e^{-.04(1)}(20)(34.96 \%)=\$ 1.31
$$

According to the put-call parity equation, $c+K e^{-r T}=p+S$; therefore, $p=$ $\$ 1.31+e^{-.04(1)}(\$ 20)-\$ 18=\$ 2.52$.
B. SCENARIO B SOLUTION (10 points): Here, we must find the current market value of the stock. We do this by applying the put-call parity equation; since $c+K e^{-r T}=$ $p+S$, it follows that $S=c+K e^{-r T}-p=2.96+e^{-.04(1)}(25)-1.98=\$ 25$.
C. SCENARIO C SOLUTION (10 points): Here, we must find the exercise price. We do this by applying the put-call parity equation; since $c+K e^{-r T}=p+S$, it follows that $K=e^{r T}(p+S-c)=e^{.04(1)}(1.42+\$ 33-5.60)=\$ 30$.
D. SCENARIO D SOLUTION (10 points): Here, we calculate the standard deviation, which requires computation by trial and error. Since 1) all parameter values for Scenarios A and D are the same except for option prices and volatility, and 2) Scenario D option prices are higher than Scenario A option prices, this implies that volatility must also be higher under Scenario D compared with Scenario A; i.e., greater than 25%. By either modeling this problem in Excel (e.g., consider using my Black-Scholes Calculator spreadsheet at http://fin4335.garven.com/spring2024/Black-ScholesCalculator.xlsx) or a web-based option pricing calculator such as the Black-Scholes Calculator at https://goodcalculators.com/black-scholes-calculator/, a volatility measure of 40% will produce the call and put prices listed in the table (i.e., $\$ 2.38$ and $\$ 3.60$ respectively).

